Propriedades físico-mecânicas de uma resina composta fluida reforçada com nanofibras
DOI:
https://doi.org/10.33448/rsd-v12i4.41015Palavras-chave:
Resinas compostas; Escovação dentária; Nanofibras.Resumo
Este estudo in vitro teve como objetivo avaliar o efeito do teste de escovação simulada no desgaste e rugosidade de diferentes resinas compostas de baixa viscosidade, bem como a tensão de contração de polimerização. Trinta espécimes retangulares (5 × 10 × 3 mm) foram preparados e divididos em três diferentes resinas compostas de baixa viscosidade (n=10): Filtek flow Z350 (Z350); NanovaPro fill (Nanova) e SureFil SDR Flow (SDR). Os espécimes foram escovados por 100.000 ciclos usando uma máquina de teste de escovação com pontas de cerdas macias (Colgate Classic, Colgate-Palmolive Co., Osasco, São Paulo, Brasil) e suspensão de dentifrício (Colgate MFP, Colgate-Palmolive Co.) em água deionizada sob uma carga de 300 g. A rugosidade superficial (Ra) (n=10) (antes e após a escovação) e o desgaste (µm) (n=10) foram medidos por rugosímetro. Também foram avaliadas a microdureza (KHN) (n=5) e a tensão de contração (MPa) (n=5). Os dados foram analisados por one-way para dados de desgaste, microdureza e tensão de retração e two-way para rugosidade ANOVA e teste de Tukey (α = 0,05). O grupo Nanova apresentou maior rugosidade final (1,790,36) (p < 0,031), desgaste (13,87±3,26) (p <0,001) e microdureza (52,56±1,7) que os outros grupos (p < 0,006). Para o ensaio de tração, todos os materiais não apresentaram diferença em relação à tensão de retração (p= 0,468). O grupo Nanova apresentou maior desgaste e rugosidade do que os outros grupos. SDR e Z350 foram estatisticamente mais resistentes ao desgaste.
Referências
Ahovuo-Saloranta, A., Forss, H., Walsh, T., Nordblad, A., Mäkelä, M., & Worthington, H. V. (2017). Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database of Systematic Review, 7(7), CD001830.
Alkilzy, M., Berndt, C., & Splieth, C. H. (2011). Sealing proximal surfaces with polyurethane tape: three-year evaluation. Clinical Oral Investigations, 15(6), 879–884.
Alrahlah, A., Silikas, N., & Watts, D. C. (2014). Post-cure depth of cure of bulk fill dental resin-composites. Dental Materials, 30(2), 149-154.
Anttila, E. J., Krintila, O. H., Laurila, T. K., Lassila, L. V., Vallittu, P. K., & Hernberg, R. G. (2008). Evaluation of polymerization shrinkage and hydroscopic expansion of fiber-reinforced biocomposites using optical fiber Bragging grating sensors. Dental Materials, 24(12), 1720-1727.
Ardestani, S. S., Bonan, R. F., Mota, M. F., Farias, R. M. D. C., Menezes, R. R., Bonan, P. R. F., Maciel, P. P., Ramos-Perez, F. M. M., Batista, A. U. D., & da Cruz Perez, D. E. (2021). Effect of the incorporation of silica blow spun nanofibers containing silver nanoparticles (SiO2/Ag) on the mechanical, physicochemical, and biological properties of a low-viscosity bulk-fill composite resin. Dental Materials, 37(10), 1615-1629.
Attar, N., Tam, L. E., & McComb, D. (2003). Flow, strength, stiffness and radiopacity of flowable resin composites. Journal of the Canadian Dental Association, 69(8), 516-521.
Baroudi, K., & Rodrigues, J. C. (2015). Flowable Resin Composites: A Systematic Review and Clinical Considerations. Journal of Clinical & Diagnostic Research, 9(6), ZE18-24.
Beauchamp, J., Caufield, P. W., Crall, J. J., Donly, K., Feigal, R., Gooch, B., Ismail, A., Kohn, W., Siegal, M., & Simonsen, R. (2008). American Dental Association Council on Scientific Affairs. Evidence-based clinical recommendations for the use of pit-and-fissure sealants: a report of the American Dental Association Council on Scientific Affairs. The Journal of the American Dental Association, 139(3), 257-268.
Borgia, E., Baron, R., & Borgia, J. L. (2019), Quality and Survival of Direct Light-Activated Composite Resin Restorations in Posterior Teeth: A 5- to 20-Year Retrospective Longitudinal Study. Journal of Prosthodontics, 28(1), e195-e203.
de Gee, A. J., Wendt, S. L., Werner, A., & Davidson, C. L. (1996). Influence of enzymes and plaque acids on in vitro wear of dental composites. Biomaterials, 17(13), 1327-1332.
Desai, H., Stewart, C. A., & Finer, Y. (2021). Minimally Invasive Therapies for the Management of Dental Caries-A Literature Review. Dentistry Journal, 9(12), 147.
Dionysopoulos, D., & Gerasimidou, O. (2021). Wear of contemporary dental composite resin restorations: a literature review. Restorative Dentistry & Endodontics, 46(2), e18.
Featherstone, J. D. B., & Doméjean, S. (2012) Minimal intervention dentistry: part 1. From 'compulsive' restorative dentistry to rational therapeutic strategies. British Dental Journal, 213(9), 441–445.
Ferracane, J. L. (2013). Resin-based composite performance: are there some things we can't predict? Dental Materials, 29(1), 51-58.
Frencken, J. E. (2017). Atraumatic restorative treatment and minimal intervention dentistry. British Dental Journal, 223(3), 183-189.
Garcia, D., Yaman, P., Dennison, J., & Neiva, G. (2014). Polymerization shrinkage and depth of cure of bulkfilll flowable composite resins. Operative Dentistry, 39(4), 441-448.
Habekost, Lde V., Camacho, G. B., Demarco, F. F., & Powers, J. M. (2007). Tensile bond strength and flexural modulus of resin cements-influence on the fracture resistance of teeth restored with ceramic inlays. Operative Dentistry, 32(5), 488–495.
Hevinga, M., Opdam, N., Frencken, J., Bronkhorst, E., & Truin. G. (2007). Microleakage and sealant penetration in contaminated carious fissures. Journal of Dentistry, 35(12), 909–914.
Ilie, N., & Stark, K. (2015), Effect of different curing protocols on the mechanical properties of low-viscosity bulk-fill composites. Clinical Oral Investigations, 19(2), 271-279.
Khan, A. S., Azam, M. T., Khan, M., Mian, S. A., & Ur Rehman, I. (2015). An update on glass fiber dental restorative composites: a systematic review. Materials Science and Engineering C, 47, 26-39.
Kruly, P. C., Giannini M., Pascotto, R. C., Tokubo, L. M., Suga, U. S. G., Marques, A. C. R., & Terada, R. S. S. (2018). Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One, 13(2), e0191942.
Lambrechts, P., Braem, M., Vuylsteke-Wauters, M., & Vanherle, G. (1989). Quantitative in vivo wear of human enamel. Journal of Dental Research, 68(12), 1752-1754.
Lassila, L., Säilynoja, E., Prinssi, R., Vallittu, P., & Garoushi, S. (2019). Characterization of a new fiber-reinforced flowable composite. Odontology, 107(3), 342-352.
Leprince, J. G., Palin, W. M., Vanacker, J., Sabbagh, J., Devaux, J., & Leloup, G. (2014). Physico-mechanical characteristics of commercially available bulk-fill composites. Journal of Dentistry, 42(8), 993-1000.
Mackenzie, L., & Banerjee, A. (2017). Minimally invasive direct restorations: a practical guide British Dental Journal, 223(3), 163-171.
Meereis, C. T., Münchow, E. A., Oliveira da Rosa, W. L., Silva, A. F., & Piva, E. (2018). Polymerization shrinkage stress of resin-based dental materials: a systematic review and meta-analyses of composition strategies. Journal of the Mechanical Behavior Biomedical Materials, 82, 268-281.
Mondelli, R. F., Garrido Gabriel, T. R., Piola Rizzante, F. A., Magalhães, A. C., Soares Bombonatti, J. F., & Ishikiriama, S. K. (2015). Do different bleaching protocols affect the enamel microhardness? European Journal of Dentistry, 9(1), 25-30.
Nanova. (2016). NovaPro Fill Universal Composite; https://nanovabio.com/product/novapro-flow-flowable-composite.
Obeid, A. T., Garcia, L. H. A., Nascimento, T. R. L., Castellano, L. R. C., Bombonatti, J. F. S., Honório, H. M., Mondelli, R. F. L., Sauro, S., & Velo, M. M. A. C. (2022). Effects of hybrid inorganic-organic nanofibers on the properties of enamel resin infiltrants - An in vitro study. Journal of the Mechanical Behavior Biomedical Materials, 126, 105067. 10.1016/j.jmbbm.2021.105067.
Obeid, A. T., Kojic, D. D., Felix, C., Velo, M. M., Furuse, A. Y., & Bombonatti, J. F. (2022). Effects of radiant exposure and distance on resin-based composite polymerization. American Journal of Dentistry, 35(4), 172-177.
Oliveira, G. U., Mondelli, R. F., Charantola Rodrigues, M., Franco, E. B., Ishikiriama, S. K., & Wang, L. (2012). Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing. Journal of Applied Oral Science, 20(5), 510–516.
Papkov, D., Zou, Y., Andalib, M. N., Goponenko, A., Cheng, S. Z., & Dzenis, Y. A. (2013). Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano. 7(4), 3324–3331.
Prakki, A., Cilli, R., Araujo, P. A., Navarro, M. F., Mondelli, J., & Mondelli, R. F. (2007). Effect of toothbrushing abrasion on weight loss and surface roughness of pH-cycled resin cements and indirect restorative materials. Quintessence International, 38(9), e544-e554.
Prakki, A., Cilli, R., Mondelli, R. F. L., & Kalachandra, S. (2008). In vitro wear, surface roughness and hardness of propanal- containing and diacetyl-containing novel composites and copolymers based on bis-GMA analogs. Dental Materials, 24(3), 410-417.
Pretty, I. A., & Ellwood, R. P. (2013). The caries continuum: opportunities to detect treat and monitor the re‐mineralization of early caries lesions. Journal of Dentistry, 41(2), 12‐21.
Rizzante, F. A. P., Mondelli, R. F. L., Furuse, A. Y., Borges, A. F. S., Mendonca, G., & Ishikiriama, S. K. (2019). Shrinkage stress and elastic modulus assessment of bulk-fill composites. Journal of Applied Oral Science, 27, e20180132.
Rodriguez, A., Yaman, P., Dennison, J., & Garcia, D. (2017). Effect of lightcuring exposure time, shade, and thickness on the depth of cure of bulk fill composites. Operative Dentistry, 42(5), 505-513.
Salek, N., Hadizadeh, M., Hosseini, S. A., Daneshkazemi, A. R., & Kouhi, M. (2018). An investigation into the three-point bending properties and the vickers microhardness of dental composites reinforced with nylon 66 nanofibers. Materials Research Express, 5(10), 105401.
Santin, D. C., Velo, M. M. A. C., Camim, F. D. S., Brondino, N. C. M., Honório, H. M., & Mondelli, R. F. L. (2021). Effect of thickness on shrinkage stress and bottom-to-top hardness ratio of conventional and bulk-fill composites. European Journal of Oral Sciences, 129(6), e12825.
Soares, C. J., Bicalho, A. A., Verissimo, C., Soares, P., Tantbirojn, D., & Versluis, A. (2016). Delayed photo-activation effects on mechanical properties of dual cured resin cements and finite element analysis of shrinkage stresses in teeth restored with ceramic inlays. Operative Dentistry, 41(5), 491–500.
Svanberg, M., Mjor, I. A., & Orstavik, D. (1990). Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. Journal of Dental Research, 69(3), 861-864.
Tian, M., Gao, Y., Liu, Y., Liao, Y., Xu, R., Hedin, N. E., & Fong, H. (2007). Bis-GMA/TEGDMA Dental Composites Reinforced with Electrospun Nylon 6 Nanocomposite Nanofibers Containing Highly Aligned Fibrillar Silicate Single Crystals. Polymer, 48(9), 2720-2728.
Van, E. A., De Munck, J., Lise, D. P., & Van Meerbeek, B. (2017). Bulk-Fill Composites: A Review of the Current Literature. The Journal of Adhesive Dentistry, 19(2), 95-109.
Velo, M. M. A. C., Wang, L., Furuse, A. Y., Brianezzi, L. F. F., Scotti, C. K., Zabeu, G. S., Maenosono, R. M., & Mondelli, R. F. L. (2019). Influence of Modulated Photo-Activation on Shrinkage Stress and Degree of Conversion of Bulk-Fill Composites. Brazilian Dental Journal, 30(6), 592-598.
Velo, M. M. A. C., Nascimento, T. R. L., Scotti, C. K., Bombonatti, J. F. S., Furuse, A. Y., Silva, V. D., Simões, T. A., Medeiros, E. S., Blaker, J. J., Silikas, N., & Mondelli, R. F. L. (2019). Improved mechanical performance of self-adhesive resin cement filled with hybrid nanofibers-embedded with niobium pentoxide. Dental Materials, 35(11), e272-e285.
Wang, L., Garcia, F. C. P., Araujo, P. A., Franco, E. B., & Mondelli, R. F. L. (2004). Wear resistance of packable resin composites after simulated toothbrushing test. Journal of Esthetic and Restorative Dentistry, 16(5), 303–314.
Wang, X., Cai, Q., Zhang, X., Wei, Y., Xu, M., Yang, X., Ma, Q., Cheng, Y., & Deng, X. (2016). Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Materials Science and Engineering C, 59, 464-470.
Yancey, E. M., Lien, W., Nuttall, C. S., Brewster, J. A., Roberts, H. W., & Vandewalle, K. S. (2019). Properties of a New Nanofiber Restorative Composite. Operative Dentistry, 44(1), 34-41.
Yancey, E. M., Lien, W., Nuttall, C. S., Brewster, J. A., Roberts, H. W., & Vandewalle, K. S. (2019). Properties of a New Nanofiber Restorative Composite. Operative Dentistry, 44(1), 34-41.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Marilia Mattar de Amoêdo Campos Velo; Natália Almeida Bastos Bitencourt; Daniella Cristo Santin; Alyssa Teixeira Obeid; Rafael Francisco Lia Mondelli; Juliana Fraga Soares Bombonatti
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.