Uso alternativo de acondicionadores de suelo para el cultivo de algodón
DOI:
https://doi.org/10.33448/rsd-v13i2.42961Palabras clave:
Gossypium hirsutum L.; Yeso agrícola; Polvo de concha; Mejillón dorado; Caracol.Resumen
Algunos ambientes de producción pueden presentar pH bajo y niveles altos de Al3+, lo que convierte a este elemento en un factor limitante en la productividad del cultivo de algodón, lo que hace necesario el uso de yeso agrícola como acondicionador del suelo e incluso polvo de concha como fuentes alternativas de bajo costo para mejorar los atributos químicos del suelo. El objetivo de este trabajo fue conocer las respuestas del uso de acondicionadores de suelo alternativos con aluminio en el cultivo de algodón. El experimento se realizó en agosto de 2022, en las Faculdades Integradas Stella Maris (FISMA). El diseño fue completamente al azar, con seis tratamientos, a saber: sin uso de acondicionadores de suelo; yeso agrícola (3,0 t ha-1); polvo de concha de mejillón dorado (3,0 t ha-1); polvo de caracol (3,0 t ha-1); yeso agrícola (1,5 t ha-1) con polvo de concha de mejillón dorado (1,5 t ha-1) y yeso agrícola (1,5 t ha-1) con polvo de caracol (1,5 t ha-1) y con cuatro repeticiones, totalizando 24 parcelas o macetas. El uso de yeso agrícola en dosis de 1,5 t ha-1 asociado a polvo de concha de mejillón dorado en dosis de 1,5 t ha-1 mostró mejores respuestas en el desarrollo del algodón. El uso de yeso agrícola a dosis de 1,5 t ha-1 asociado a polvo de concha de mejillón dorado a dosis de 1,5 t ha-1 mejora las condiciones del suelo para el cultivo. El método de pirólisis a altas temperaturas para romper las estructuras cristalinas de las conchas de los moluscos resultó eficiente.
Citas
Banzatto, D. A. & Kronka, S. do N. (2013). Experimentação Agrícola. (4a ed.), Funep. 237p.
Carlquist, S. (1975). Ecological strategies of xylem evolution. University of California. 259 p.
Castro, E. M., Pereira, F. J. & Paiva, R. (2009). Histologia vegetal: estrutura e função de órgãos vegetativos. UFLA, 234p.
Chakraborty, A., Parveen, S., Chanda, D. K. & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. Rsc Advances, 10(49), 29543-29554. http://dx.doi.org/10.1039/d0ra04271d
Chang, F. H. & Troughton, J. H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica, 6: 57–65.
Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2009). Manual de análises químicas de solos, plantas e fertilizantes. (2a ed.), 627p.
Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. (3a ed.), 353p.
Ferreira, M. M. M., Ferreira, G. B., Fontes, P. C. R. & Dantas, J. P. (2006). Índice SPAD e teor de clorofila no limbo foliar do tomateiro em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Ceres, 53(305), 83-92.
Hannan, F., Islam, F., Huang, Q., Farooq, M. A., Ayyaz, A., Fang, R., Ali, B., Xie, X. & Zhou, W. (2021). Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. Chemosphere, 282, 130897. http://dx.doi.org/10.1016/j.chemosphere.2021.130897
Hao, S., Cao, H., Wang, H. & Pan, X. (2019). The physiological responses of tomato to water stress and re-water in different growth periods. Scientia Horticulturae, 249, 143-154. http://dx.doi.org/10.1016/j.scienta.2019.01.045
Harris, D. C. (2005). Análise quimica quantitativa. (6a ed.), Trad. Bonapace. A. P. & Barcia, O. E. LTC Editora. 876p.
Hou, J., Riaz, M., Yan, L., Lu, K. & Jiang, C. (2022). Effect of exogenous l-aspartate nano calcium on root growth, calcium forms and cell wall metabolism of Brassica napus L. Nanoimpact, 27, 1-14. http://dx.doi.org/10.1016/j.impact.2022.100415
Karčauskienė, D., Repłienė, R., Ambrazaitienė, D., Mockevičienė, I., Iaudinis, G. & Skuodienė, R. (2019). A complex assessment of mineral fertilizers with humic substances in an agroecosystem of acid soil. Zemdirbyste-Agriculture, 106(4), 307-314. http://dx.doi.org/10.13080/z-a.2019.106.039
Khushboo, Bhardwaj, K., Singh, P., Raina, M., Sharma, V. & Kumar, D. (2018). Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cellular & Developmental Biology – Plant. 54(5), 495-507. http://dx.doi.org/10.1007/s11627-018-9912-3
Lauricella, D., Butterly, C.R., Weng, Z., Clark, G.J., Sale, P.W.G., Li, G. & Tang, C. (2020). Impact of novel materials on alkalinity movement down acid soil profiles when combined with lime. Journal of Soils and Sediments, 21(1): 52-62. http://dx.doi.org/10.1007/s11368-020-02747-4
Lisboa, L. A. M., Cavichioli, J. C., Vitorino, R., Figueiredo, P. A. M. & Viana, R. S. (2021). Nutrient suppression in passion fruit species: an approach to leaf development and morphology. Colloquium Agrariae, 17(3), 89-102. http://dx.doi.org/10.5747/ca.2021.v17.n3.a443
Lisboa, L. A. M, Dias, G. H. O., Sacco, H. A. A., Padovan, J. V. R., Rodrigues, G. B., Ribeiro, K. B., Silva, G. G., Cardoso, A. S., Pereira, L. B. & Figueiredo, P. A. M. (2021). Urochloa brizantha cultivated in aluminum-toxic soil: changes in plant growth and ultrastructure of root and leaf tissues. Tropical Grasslands-Forrajes Tropicales, 9(1), 23-33. http://dx.doi.org/10.17138/tgft(9)23-33
Luiz, M. S., Zanão Junior, L. A., Ribeiro, M. R., Matos, M. A. & Andrade, D. S. (2022). Residual effects of agricultural gypsum on soil chemical and microbiological characteristics. Soil Use and Management, 38(4), 1–11. http://dx.doi.org/10.1111/sum.12837
Malavolta, E. (1980). Elementos de nutrição mineral de plantas. Ceres. 251p.
Maron, L. (2019). From foe to friend: the role of chloride as a beneficial macronutrient. The Plant Journal, 99(5), 813-814. http://dx.doi.org/10.1111/tpj.14498
Mirjalili, A., Lebaschi, M. H., Ardakani, M. R., Sharifabad, H. H. & Mirza, M. (2022). Plant density and manure application affected yield and essential oil composition of Bakhtiari savory (Satureja bachtiarica Bunge.). Industrial Crops and Products, 177, 114516. http://dx.doi.org/10.1016/j.indcrop.2021.114516
Neves, G. F. O., Brito, B. S., Januário, T. V. V., Santos Junior, E. D. & Lisboa, L. A. M. (2022). Morphophysiological and developmental parameters of maize varieties. Journal of Biotechnology and Biodiversity, 10(3), 261-271. http://dx.doi.org/10.20873/jbb.uft.cemaf.v10n3.neves
Parry, C., Blonquist Junior, J. M. & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell and Environment, 37, 2508–2520. https://doi.org/10.1111/pce.12324
Pérez-Esteban, J., Escolástico, C., Sanchis, I., Masaguer, A. & Moliner, A. (2019). Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils. Sustainability, 11(18), 4844. http://dx.doi.org/10.3390/su11184844
Piao, J., Che, W., Li, X., Li, X., Zhang, C., Wang, Q., Jin, F. & Hua, S. (2022). Application of peanut shell biochar increases rice yield in saline-alkali paddy fields by regulating leaf ion concentrations and photosynthesis rate. Plant and Soil, 27, 1-8. http://dx.doi.org/10.1007/s11104-022-05767-w
Pompelli, M. F., Ferreira, P. P. B., Chaves, A. R. M., Figueiredo, R. C. B. Q., Martins, A. O., Jarma-Orozco, A., Bhatt, A., Batista-Silva, W., Endres, L. & Araújo, W. L. (2021). Physiological, metabolic, and stomatal adjustments in response to salt stress in Jatropha curcas. Plant Physiology and Biochemistry, 168, 116-127. http://dx.doi.org/10.1016/j.plaphy.2021.09.039
R Studio Team. (2019). RStudio: Integrated Development for R. RStudio, Inc. http://www.rstudio.com/
Raij, B., Cantarella, H., Quaggio, J. A. & Furlani, A. M. C. (1996). Recomendações de adubação e calagem para o Estado de São Paulo. (2a ed.), IAC, 285p.
Rufty, T. W., Mackown, C. T., Lazof, D. B. & Carter, T. E. (1995). Effects of aluminium on nitrate uptake and assimilation. Plant, Cell and Environment, 18(11), 1325-1331. http://dx.doi.org/10.1111/j.1365-3040.1995.tb00192.x
Sathee, L. & Jain, V. (2021). Interaction of elevated CO2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. Protoplasma, 259(3), 703-716. http://dx.doi.org/10.1007/s00709-021-01692-4
Sherrod, L. A., Vigil, M. F. & Stewart, C. E. Do. (2019). Fulvic, Humic, and Humin Carbon Fractions Represent Meaningful Biological, Physical, and Chemical Carbon Pools? Journal of Environmental Quality, 48(6), 1587-1593. http://dx.doi.org/10.2134/jeq2019.03.0104
Wang, C., Wu, S., Tankari, M., Zhang, X., Li, L., Gong, D., Hao, W., Zhang, Y., Mei, X., & Wang, Y. (2018). Stomatal aperture rather than nitrogen nutrition determined water use efficiency of tomato plants under nitrogen fertigation. Agricultural Water Management, 209, 94-101. http://dx.doi.org/10.1016/j.agwat.2018.07.020
Wei, Y., Han, R., Xie, Y., Jiang, C. & Yu, Y. (2021). Recent Advances in Understanding Mechanisms of Plant Tolerance and Response to Aluminum Toxicity. Sustainability, 13(4), 1782. http://dx.doi.org/10.3390/su13041782
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Guilherme Bandeca Rafachinho; Lucas Aparecido Manzani Lisboa; José Carlos Cavichioli; Thiago de Souza Ferreira; Aldeir Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.