Uso alternativo de condicionadores de solos para a cultura do algodoeiro

Autores

DOI:

https://doi.org/10.33448/rsd-v13i2.42961

Palavras-chave:

Gossypium hirsutum L.; Gesso agrícola; Pó de concha; Mexilhão-dourado; Caramujo.

Resumo

Alguns ambientes de produção podem apresentar, baixo pH e altos teores de Al3+, tornando assim pois esse elemento torna um fator limitante na produtividade da cultura do algodoeiro, que tonar necessário o uso de gesso agrícola como condicionador de solo e mesmo pó de conchas como fontes alternativas debaixo custo para melhorar os atributos químicos do solo. O objetivo desse trabalho foi de conhecer as respostas do uso de condicionadores alternativos de solo com alumínio na cultura do algodoeiro. O experimento foi realizado em agosto de 2022, nas Faculdades Integradas Stella Maris (FISMA). O delineamento foi inteiramente casualizado, com seis tratamentos, sendo eles: ausência do uso de condicionadores de solo; gesso agrícola (3,0 t ha-1); pó de concha de mexilhão-dourado (3,0 t ha-1); pó de caramujo (3,0 t ha-1); gesso agrícola (1,5 t ha-1) com pó de concha de mexilhão dourado (1,5 t ha-1) e gesso agrícola (1,5 t ha-1) com pó de caramujo (1,5 t ha-1) e com quatro repetições, totalizando 24 parcelas ou vasos. O uso do gesso agrícola na dose de 1,5 t ha-1 associado com o pó de concha de mexilhão dourado na dose de 1,5 t ha-1 apresentou melhores respostas no desenvolvimento do algodoeiro. O uso do gesso agrícola na dose de 1,5 t ha-1 associado com o pó de concha de mexilhão dourado na dose de 1,5 t ha-1 melhora as condições do solo para cultivo. O método de pirólise em altas temperaturas para romper as estruturas cristalinas das conchas dos moluscos foi eficiente.

Referências

Banzatto, D. A. & Kronka, S. do N. (2013). Experimentação Agrícola. (4a ed.), Funep. 237p.

Carlquist, S. (1975). Ecological strategies of xylem evolution. University of California. 259 p.

Castro, E. M., Pereira, F. J. & Paiva, R. (2009). Histologia vegetal: estrutura e função de órgãos vegetativos. UFLA, 234p.

Chakraborty, A., Parveen, S., Chanda, D. K. & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. Rsc Advances, 10(49), 29543-29554. http://dx.doi.org/10.1039/d0ra04271d

Chang, F. H. & Troughton, J. H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica, 6: 57–65.

Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2009). Manual de análises químicas de solos, plantas e fertilizantes. (2a ed.), 627p.

Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. (3a ed.), 353p.

Ferreira, M. M. M., Ferreira, G. B., Fontes, P. C. R. & Dantas, J. P. (2006). Índice SPAD e teor de clorofila no limbo foliar do tomateiro em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Ceres, 53(305), 83-92.

Hannan, F., Islam, F., Huang, Q., Farooq, M. A., Ayyaz, A., Fang, R., Ali, B., Xie, X. & Zhou, W. (2021). Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. Chemosphere, 282, 130897. http://dx.doi.org/10.1016/j.chemosphere.2021.130897

Hao, S., Cao, H., Wang, H. & Pan, X. (2019). The physiological responses of tomato to water stress and re-water in different growth periods. Scientia Horticulturae, 249, 143-154. http://dx.doi.org/10.1016/j.scienta.2019.01.045

Harris, D. C. (2005). Análise quimica quantitativa. (6a ed.), Trad. Bonapace. A. P. & Barcia, O. E. LTC Editora. 876p.

Hou, J., Riaz, M., Yan, L., Lu, K. & Jiang, C. (2022). Effect of exogenous l-aspartate nano calcium on root growth, calcium forms and cell wall metabolism of Brassica napus L. Nanoimpact, 27, 1-14. http://dx.doi.org/10.1016/j.impact.2022.100415

Karčauskienė, D., Repłienė, R., Ambrazaitienė, D., Mockevičienė, I., Iaudinis, G. & Skuodienė, R. (2019). A complex assessment of mineral fertilizers with humic substances in an agroecosystem of acid soil. Zemdirbyste-Agriculture, 106(4), 307-314. http://dx.doi.org/10.13080/z-a.2019.106.039

Khushboo, Bhardwaj, K., Singh, P., Raina, M., Sharma, V. & Kumar, D. (2018). Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cellular & Developmental Biology – Plant. 54(5), 495-507. http://dx.doi.org/10.1007/s11627-018-9912-3

Lauricella, D., Butterly, C.R., Weng, Z., Clark, G.J., Sale, P.W.G., Li, G. & Tang, C. (2020). Impact of novel materials on alkalinity movement down acid soil profiles when combined with lime. Journal of Soils and Sediments, 21(1): 52-62. http://dx.doi.org/10.1007/s11368-020-02747-4

Lisboa, L. A. M., Cavichioli, J. C., Vitorino, R., Figueiredo, P. A. M. & Viana, R. S. (2021). Nutrient suppression in passion fruit species: an approach to leaf development and morphology. Colloquium Agrariae, 17(3), 89-102. http://dx.doi.org/10.5747/ca.2021.v17.n3.a443

Lisboa, L. A. M, Dias, G. H. O., Sacco, H. A. A., Padovan, J. V. R., Rodrigues, G. B., Ribeiro, K. B., Silva, G. G., Cardoso, A. S., Pereira, L. B. & Figueiredo, P. A. M. (2021). Urochloa brizantha cultivated in aluminum-toxic soil: changes in plant growth and ultrastructure of root and leaf tissues. Tropical Grasslands-Forrajes Tropicales, 9(1), 23-33. http://dx.doi.org/10.17138/tgft(9)23-33

Luiz, M. S., Zanão Junior, L. A., Ribeiro, M. R., Matos, M. A. & Andrade, D. S. (2022). Residual effects of agricultural gypsum on soil chemical and microbiological characteristics. Soil Use and Management, 38(4), 1–11. http://dx.doi.org/10.1111/sum.12837

Malavolta, E. (1980). Elementos de nutrição mineral de plantas. Ceres. 251p.

Maron, L. (2019). From foe to friend: the role of chloride as a beneficial macronutrient. The Plant Journal, 99(5), 813-814. http://dx.doi.org/10.1111/tpj.14498

Mirjalili, A., Lebaschi, M. H., Ardakani, M. R., Sharifabad, H. H. & Mirza, M. (2022). Plant density and manure application affected yield and essential oil composition of Bakhtiari savory (Satureja bachtiarica Bunge.). Industrial Crops and Products, 177, 114516. http://dx.doi.org/10.1016/j.indcrop.2021.114516

Neves, G. F. O., Brito, B. S., Januário, T. V. V., Santos Junior, E. D. & Lisboa, L. A. M. (2022). Morphophysiological and developmental parameters of maize varieties. Journal of Biotechnology and Biodiversity, 10(3), 261-271. http://dx.doi.org/10.20873/jbb.uft.cemaf.v10n3.neves

Parry, C., Blonquist Junior, J. M. & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell and Environment, 37, 2508–2520. https://doi.org/10.1111/pce.12324

Pérez-Esteban, J., Escolástico, C., Sanchis, I., Masaguer, A. & Moliner, A. (2019). Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils. Sustainability, 11(18), 4844. http://dx.doi.org/10.3390/su11184844

Piao, J., Che, W., Li, X., Li, X., Zhang, C., Wang, Q., Jin, F. & Hua, S. (2022). Application of peanut shell biochar increases rice yield in saline-alkali paddy fields by regulating leaf ion concentrations and photosynthesis rate. Plant and Soil, 27, 1-8. http://dx.doi.org/10.1007/s11104-022-05767-w

Pompelli, M. F., Ferreira, P. P. B., Chaves, A. R. M., Figueiredo, R. C. B. Q., Martins, A. O., Jarma-Orozco, A., Bhatt, A., Batista-Silva, W., Endres, L. & Araújo, W. L. (2021). Physiological, metabolic, and stomatal adjustments in response to salt stress in Jatropha curcas. Plant Physiology and Biochemistry, 168, 116-127. http://dx.doi.org/10.1016/j.plaphy.2021.09.039

R Studio Team. (2019). RStudio: Integrated Development for R. RStudio, Inc. http://www.rstudio.com/

Raij, B., Cantarella, H., Quaggio, J. A. & Furlani, A. M. C. (1996). Recomendações de adubação e calagem para o Estado de São Paulo. (2a ed.), IAC, 285p.

Rufty, T. W., Mackown, C. T., Lazof, D. B. & Carter, T. E. (1995). Effects of aluminium on nitrate uptake and assimilation. Plant, Cell and Environment, 18(11), 1325-1331. http://dx.doi.org/10.1111/j.1365-3040.1995.tb00192.x

Sathee, L. & Jain, V. (2021). Interaction of elevated CO2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. Protoplasma, 259(3), 703-716. http://dx.doi.org/10.1007/s00709-021-01692-4

Sherrod, L. A., Vigil, M. F. & Stewart, C. E. Do. (2019). Fulvic, Humic, and Humin Carbon Fractions Represent Meaningful Biological, Physical, and Chemical Carbon Pools? Journal of Environmental Quality, 48(6), 1587-1593. http://dx.doi.org/10.2134/jeq2019.03.0104

Wang, C., Wu, S., Tankari, M., Zhang, X., Li, L., Gong, D., Hao, W., Zhang, Y., Mei, X., & Wang, Y. (2018). Stomatal aperture rather than nitrogen nutrition determined water use efficiency of tomato plants under nitrogen fertigation. Agricultural Water Management, 209, 94-101. http://dx.doi.org/10.1016/j.agwat.2018.07.020

Wei, Y., Han, R., Xie, Y., Jiang, C. & Yu, Y. (2021). Recent Advances in Understanding Mechanisms of Plant Tolerance and Response to Aluminum Toxicity. Sustainability, 13(4), 1782. http://dx.doi.org/10.3390/su13041782

Downloads

Publicado

25/02/2024

Como Citar

RAFACHINHO, G. B. .; LISBOA, L. A. M. .; CAVICHIOLI, J. C. .; FERREIRA, T. de S. .; SILVA, A. Uso alternativo de condicionadores de solos para a cultura do algodoeiro. Research, Society and Development, [S. l.], v. 13, n. 2, p. e11113242961, 2024. DOI: 10.33448/rsd-v13i2.42961. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/42961. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas