Propiedades mecánicas, químicas y biológicas de la impresíon 3D de PLA: Una revisíon sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i12.43986

Palabras clave:

Copolímero de ácido poliláctico; Odontología; Impresíon tridimensional; Revisíon sistemática.

Resumen

El objetivo de esta revisión sistemática es evaluar, a través de los estudios in vitro incluidos, si el PLA (ácido polilactico) tiene propiedades mecánicas, químicas y biológicas que permitan su uso clínico en odontología. Se realizó una búsqueda electrónica en las bases de datos Pubmed, Science Direct, Embase y Scopus que contenían los términos ''ácido poliláctico'' y ''impresión 3D'' y ''biomateriales'' y ''materiales dentales'' y prótesis dentales y odontología. El criterio de inclusión fue cubrir artículos escritos y publicados en inglés que se centraran en el uso de PLA en el campo de los materiales y biomateriales dentales impresos mediante el método 3D. Se excluyeron todos los artículos que no se centraran en el estudio del polímero PLA, así como revisiones sistemáticas, capítulos de libros, resúmenes, cartas y artículos de congresos. Se encontraron 1814 referencias, que luego de aplicar los criterios de exclusión dieron como resultado la inclusión final de trece artículos para la revisión. Con base en los estudios incluidos en esta revisión sistemática, es posible concluir que el PLA impreso en 3D utilizado como material y biomaterial dental presenta propiedades mecánicas, químicas y biológicas favorables que indican su potencial uso clínico.

Citas

Alksne, M., Kalvaityte, M., Simoliunas, E., Gendviliene, I., Barasa, P., Rinkunaite, I., Kaupinis, A., Seinin, D., Rutkunas, V., & Bukelskiene, V. (2022). Dental pulp stem cell-derived extracellular matrix: autologous tool boosting bone regeneration. Cytotherapy. 24(6):597-607. 10.1016/j.jcyt.2022.02.002.

Ang, H. Y., Chan, J., Toong, D., Venkatraman, S. S., Chia, S. J., & Huang, Y. Y. (2017). Tailoring the mechanical and biodegradable properties of binary blends of biomedical thermoplastic elastomer. J Mech Behav Biomed Mater. 79:64-72. 10.1016/j.jmbbm.2017.12.013.

Behzadnasab M., Yousefi A. A, Ebrahimibagha D., & Nasiri F. (2020) Efeitos das condições de processamento nas propriedades mecânicas de peças impressas em PLA. Protótipo Rápido. J. 26 :381–389. 10.1108/RPJ-02-2019-0048.

Bona, A. D., Cantelli, V., Britto, V. T., Collares, K. F., & Stansbury, J. W. (2021). 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater 37:336–350. https:// doi.org/10.1016/j.dental.2020.11.030.

Brounstein, Z., Yeager, C. M., & Labouriau, A. (2021) Development of Antimicrobial PLA Composites for Fused Filament Fabrication. Polymers (Basel). 13(4):580. 10.3390/polym13040580.

Caviezel, C., Grünwald, R., Ehrenberg-Silies, S., Gentil, S., Jetzke, T., Bovenschulte, M. (2017). Additive Fertigungsverfahren (3D-Druck)—Innovationsanalyse ; TAB Arbeitsbereicht: Berlim, Alemanha, 2017.

Charasseangpaisarn, T., Wiwatwarrapan, C., & Srimaneepong, V. (2022). Thermal Change Affects Flexural and Thermal Properties of Fused Deposition Modeling Poly (Lactic Acid) and Compression Molding Poly (Methyl Methacrylate). Eur J Dent. 10.1055/s-0042-1743148

Chen, T., Wang, D., Chen, X., Qiu, M., & Fan, Y. (2022). Three-dimensional printing of high-fux ceramic membranes with an asymmetric structure via digital light processing. Ceram Int 48:304–312. https://doi.org/10.1016/j.ceramint.2021.09.105.

Coppola, B., Schmitt, J., Lacondemine, T., Tardivat, C., Montanaro, L., & Palmero, P. (2022). Digital Light Processing stereolithography of zirconia ceramics: slurry elaboration and orientation-reliant mechanical properties. J Eur Ceram Soc 42:2974–2982. https://doi.org/10.1016/j.jeurceramsoc. 2022.01.024.

Cresswell-Boyes, A.J., Barber, A. H., Mills, D., Tatla, A., & Davis, G. R. (2018). Approaches to 3D printing teeth from X-ray microtomography. J Microsc. 272(3):207-212. 10.1111/jmi.12725.

Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R. B., Rodriguez, C. A., & Roman-Flores, A. (2019). Caracterização das propriedades mecânicas de estruturas e materiais FFF: Uma revisão das abordagens experimental, computacional e teórica. Materiais. 12 :895.

D’Anna, A., Arrigo, R., & Frache, A. (2019). PLA/PHB blends: biocompatibilizer effects. Polymers (Basel).11:1416. https://doi.org/10.3390/polym11091416.

da Silva, G. G., Shimano, M. V. W., Macedo, A. P., da Costa Valente, M. L., & Dos Reis, A. C. (2022). In vitro assessment of polyetheretherketone for an attachment component for an implant-retained overdenture. J Prosthet Dent 127(2):319-e1. https://doi.org/10.1016/j.prosdent.2021.07.031.

Dawood, A., Marti, B., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. Br Dent J. 219(11):521-9. 10.1038/sj.bdj.2015.914.

Dawood, A., Martí, B., Sauret Jackson, V., & Darwood, A. (2015). Impressão 3D em odontologia. Br. Dente. J. 219, 521–529.

de Campos, MR, Kreve, S., da Silva, GG et al. Análise mecânica e microestrutural de um novo modelo de attachments para overdentures retidos por mini-implantes obtidos por impressão 3D com três diferentes polímeros. Polim. Touro. (2023). https://doi.org/10.1007/s00289-023-04871-w

Deng, K., Chen, H., Zhao, Y., Zhou, Y., Wang, Y., & Sun, Y. (2018). Evaluation of adaptation of the polylactic acid pattern of maxillary complete dentures fabricated by fused deposition modelling technology: A pilot study. PLoS One. 13(8): e0201777. 10.1371/journal.pone.0201777.

Deng, K. H., Wang, Y., Chen, H., Zhao, Y. J., Zhou, Y. S., & Sun, Y. C. (2017). Quantitative evaluation of printing accuracy and tissue surface adaptation of mandibular complete denture polylactic acid pattern fabricated by fused deposition modeling technology. Zhonghua Kou Qiang Yi Xue Za Zhi. 52(6):342-345. Chinese. 10.3760/cma.j.issn.1002-0098.2017.06.004.

Deshmane, S., Kendre, P., Mahajan, H., & Jain, S. (2021). Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Dev Ind Pharm. 47(9):1362-1372. 10.1080/03639045.2021.1994990.

Doi, Y., & Steinbüchel, A. (2002). Biopolímeros, Aplicações e Produtos Comerciais – Poliésteres III. Wiley-VCH

Farah S, Anderson DG, Langer R. (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - a comprehensive review. Adv Drug Deliv Rev 107:367-392. https://doi.org/10.1016/j.addr.2016.06.012.

He, C., Cao, Y., Ma, C., Liu, X., Hou, F., & Yan, L. (2021) Digital light processing of complex-shaped 3D-zircon (ZrSiO4) ceramic components from a photocurable polysiloxane/ZrO2 slurry. Ceram Int 47:32905–33291. https://doi.org/10.1016/j.ceramint.2021.08.189.

Hong, Li., Kenan, Ma., Yuchun, Sun., & Hu, Chen. (2021). Design parameters of polylactic acid custom trays manufactured by fused deposition modeling for partial edentulism: Consideration of the accuracy of the definitive cast. The Journal of Prosthetic Dentistry, 127(2), 288.e1-288.e11

Horn, T. J., & Harryson, O. L. A. (2012). Visão geral das tecnologias atuais de manufatura aditiva e aplicações selecionadas. ciência Prog. 95, 255–282.

Ilyas, RA., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., & Atikah, M. S. N., Asyraf, M. R. M., Ishak, M. R., Razman, M. R., Nurazzi, N. M., Norrrahim, M. N. F., Abral, H., & Asrofi, M. (2021). Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers (Basel). 13(8):1326. 10.3390/polym13081326.

Ishida, Y., Miura, D., & Shinya, A. (2022). Application of fused deposition modeling technology for fabrication jigs of three-point bending test for dental composite resins. J Mech Behav Biomed Mater. 130:105172. 10.1016/j.jmbbm.2022.105172.

Hamad, K., Kaseem, M., Yang H. W., Deri, F., & Ko, Y. G. (2015). Propriedades e aplicações médicas do ácido polilático: uma revisão. Expresso Polim. Deixe, 9, 435 – 455.

Kessler, A., Hickel, R., & Reymus, M. (2020). Impressão 3D em Odontologia—Estado da Arte. Operador Dente. 45, 30–40.

Khorsandi, D., Fahimipour, A., Abasian, P., Saber, S. S., Seyedi, M., & Ghanavati, S. et al. (2021). 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater 122:26–49. https://doi.org/10.1016/j.actbio.2020.12.044.

Kieschnick, A., Schweiger, J., Edelhoff, D., & Güth, J. F. (2020). Status Präsens 2020: Additive CAD/CAM-Gestützte Fertigungstechnologien im Zahntechnischen Labor.

Kristiawan, R. B., Imaduddin, F., Ariawan, D., & Arifin, Z. (2021). Uma revisão da impressão 3D de modelagem por deposição fundida (FDM): Processamento de filamentos, materiais e parâmetros de impressão. Abra Eng. 2021; 11 :639–649. 10.1515/eng-2021-0063.

Leonardo, R., Roberto, P., Antonio, F., & Alberto, B. (2022). Additive manufacturing of PLA to mimic the thrust force of mandibular bone during drilling. Procedia CIRP, 110, 198-201, https://doi.org/10.1016/j.procir.2022.06.036.

Liu, Y., Di, P., Zhao, Y., Hao, Q., Tian, J., & Cui, H. (2019). Accuracy of multi-implant impressions using 3D-printing custom trays and splinting versus conventional techniques for complete arches. Int J Oral Maxillofac Implants. 34(4):1007–1014. 10.11607/jomi.7049.

Lo Russo, L., Lo Muzio, E., Troiano, G., Salamini, A., Zhurakivska, K., & Guida, L. (2021). Accuracy of trial complete dentures fabricated by using fused deposition modeling 3-dimensional printing: An in vitro study. J Prosthet Dent. S0022-3913(21)00416-9. 10.1016/j.prosdent.2021.07.021.

Marin, E., Boschetoo, F., Zanocco, M., Honma, T., Ahu, W., & Pezzotti, G. (2021). Explorative study on the antibacterial efects of 3D-printed PMMA/nitrides composites. Mat Des 206:109788. https://doi. org/10.1016/j.matdes.2021.109788.

Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Adv Drug Deliv Rev. 107:17-46. 10.1016/j.addr.2016.04.003.

Muro-Fraguas, I., Sainz-García, A., Gómez, P.F., López, M., Múgica-Vidal, R., & Sainz-García. (2020). Atmospheric pressure cold plasma anti-bioflm coatings for 3D printed food tools. Innov Food Sci Emerg Technol 64:102404. https://doi.org/10.1016/j.ifset.2020.102404.

Nagata, K., Muromachi, K., Kouzai, Y., Inaba, K., Inoue, E., Fuchigami, K., Nihei, T., Atsumi, M., Kimoto, K., & Kawana, H. (2022). Fit accuracy of resin crown on a dental model fabricated using fused deposition modeling 3D printing and a polylactic acid filament. J Prosthodont Res. 10.2186/jpr.JPR_D_21_00325.

Najeeb, S., Zafar, M. S., Khurshid, Z., & Siddiqui, F. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 60:12–19. https://doi.org/10.1016/j.jpor. 2015.10.001.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hofmann, T. C., & Mulrow, C. D. et al (2021) (2020). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372(71). https://doi.org/10.1136/bmj.n71.

Panayotov, I.V., Orti, V., Cuisinier, F., & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 27:118.

Papathanasiou, I., Kamposiora, P., Papavasiliou, G., & Ferrari, M. (2020). The use of PEEK in digital prosthodontics: a narrative review. BMC Oral Health 20:217. https://doi.org/10.1186/ s12903-020-01202-7.

Park, M. E., & Shin, S. Y. (2018). Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J Prosthet Dent 119(5): 861. e1–861.e7.

Park, S. M., Park, J. M., Kim, S. K., Heo, S. J., & Koak, J. Y. (2020). Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials (Basel). 13(18):3970. 10.3390/ma13183970.

Peng, L., Wang, Z. H., Sun, Y. C., Qu, W., Han, Y., & Liang, Y. H. (2018). Computer aided design and three-dimensional printing for apicoectomy guide template. Beijing Da Xue Xue Bao Yi Xue Ban.;50(5):905-910.

Peters, K. (2010). Polymer optical fber sensors-a review. Smart Mater Struct 20(1):013002.

Rebong, R. E., Stewart, K. T., Utreja, A., Ghoneima, A. A. (2018). Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: a comparative study. Angle Orthod 88:363–369. https://doi.org/10.2319/ 071117-460.1 53.

Reverte, J. M., Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., Becar, J. P. (2020). Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique. Materials (Basel).13(8):1924. 10.3390/ma13081924.

Singh, S., Singh, G., Prakash, C., Ramakrishna, S. (2020). Current status and future directions of fused flament fabrication. J Manuf Process 55:288–306. https://doi.org/10.1016/j.jmapro.2020.04.049.

Singhvi, M. S., Zinjarde, S. S., Gokhale, D. V. (2019). Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 127(6):1612-1626. 10.1111/jam.14290.

Su, S., Kopitzky, R., Tolga, S., Kabasci, S. (2019). Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers (Basel). 11(7):1193. 10.3390/polym11071193

Tappa, K., Jammalamadaka, U., Weisman, J. A., Ballard, D. H., Wolford, D. D., Pascual-Garrido, C., Wolford, L. M., Woodard, P. K., & Mills, D. K. (2019). 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery. J Funct Biomater. 10(2):17. 10.3390/jfb10020017.

Thompson, M. K., Morôni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernardo, A., Schulz, J., Graf, P., & Ahuja, B. (2016). Design para Manufatura Aditiva: Tendências, oportunidades, considerações e restrições. CIRP Ana. 2016, 65, 737-760.

Valerga, A. P., Batista, M., Puyana, R., Sambruno, A., Wendt, C., & Marcos, M. (2017). Estudo preliminar dos efeitos da cor do fio PLA nas características geométricas de peças fabricadas por FDM. Procedia Manuf. 2017; 13 :924–931. 10.1016/j.promfg.2017.09.161.

Van Noort, R. (2012). O futuro dos aparelhos odontológicos é digital. Dente. Mate. 28, 3–12.

Wach, R. A., Wolszczak, P., & Adamus-Wlodarczyk, A. (2018). Melhoria das propriedades mecânicas de peças FDM-PLA via recozimento térmico. Macromol. Mate. Eng. 303(9). 10.1002/mame.201800169.

Ye, H., Wang, Z., Sun, Y., Zhou, & Y. (2020). Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects. J Prosthet Dent. 126(2):257-261. 10.1016/j.prosdent.2020.05.026.

Zhang, Y., Kumar, P., Lv, S., Xiong, D., Zao, H., & Cai, Z. et al. (2021). Recent advances in 3D bioprinting of vascularized tissues. Mater Des 199:109398. https://doi.org/10.1016/j.matdes.2020.109398.

Zimmermann, M., Ender, A., Attin, T., & Mehl, A. (2020). Fracture load of three-unit full-contour fixed dental prostheses fabricated with subtractive and additive CAD/CAM technology. Clin Oral Investig. 24(2): 1035–1042.

Descargas

Publicado

20/11/2023

Cómo citar

LODI , H. D. .; CAMPOS, M. R. de .; REIS , A. C. dos . Propiedades mecánicas, químicas y biológicas de la impresíon 3D de PLA: Una revisíon sistemática . Research, Society and Development, [S. l.], v. 12, n. 12, p. e126121243986, 2023. DOI: 10.33448/rsd-v12i12.43986. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43986. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud