Panaroma de las investigaciones sobre determinación sexual en peces, con énfasis en arapaima: Un análisis cienciométrico
DOI:
https://doi.org/10.33448/rsd-v13i2.45009Palabras clave:
Arapaima gigas; Cienciometría; Identificación sexual; Producción científica.Resumen
Los peces son conocidos por su diversidad y plasticidad en los mecanismos de determinación del sexo, lo que los distingue entre los vertebrados. Esta investigación tiene como objetivo realizar una revisión cienciométrica de las investigaciones sobre la determinación sexual en peces, con especial foco en el arapaima (Arapaima gigas) especie de gran importancia acuícola, cuyos mecanismos de determinación y diferenciación sexual aún se desconocen. Para lograr este objetivo, se realizó un levantamiento bibliográfico en la base de datos Web of Science, utilizando palabras clave y operadores booleanos, como "determinación del sexo Y pez", "marcador específico del sexo Y pez", "identificación del sexo Y pez" y "sexo específico Y pez". identificación Y Arapaima gigas”, para el período 2000 a 2020. Como resultado, se analizaron 80 artículos de 22 países. China fue la responsable del mayor volumen de publicaciones, con un total de 31 artículos. En el estudio se identificaron 35 familias y 75 especies de peces, con énfasis en los de importancia comercial. Se observó un aumento significativo de los estudios en el período de 2017 a 2020, especialmente debido al uso cada vez mayor de tecnologías de secuenciación de próxima generación (NGS). En relación al arapaima se encontraron 10 publicaciones, pero hasta el presente momento no existe un método completamente eficiente y accesible para la identificación sexual de esta especie. Estos hallazgos proporcionan información importante sobre el estado actual de la investigación sobre la determinación del sexo en los peces, destacando áreas de avance y la necesidad de futuras investigaciones para mejorar el conocimiento en esta área específica.
Citas
Accioly, J. V., & Molina, W. F. (2008). Cytogenetic studies in Brazilian marine Sciaenidae and Sparidae fishes (Perciformes). Genetics and Molecular Research. 7(2), 358-370. https://doi.org/10.4238/vol7-2gmr427.
Almeida, I. G, Ianella, P, Faria, M. T, Paiva, S. R., & Caetano, A. R. (2013). Bulked segregant analysis of the pirarucu (Arapaima gigas) genome for identification of sex-specific molecular markers. Genetics and Molecular Research. https://doi.org/10.4238/2013.december.4.17.
Anderson, D., Yu, T., Phillips, B., & Schmezer, P. (1994). Fundamental and Molecular Mechanisms of Mutagenesis The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutation Research, 307(1), 261–271. https://doi.org/10.1016/0027-5107(94)90300-x.
Andrade, J. I. A. (2007). Influence of diets supplemented with vitamins C and E on pirarucu (Arapaima gigas) blood parameters. Comparative Biochemistry and Physiology, Part A: Molec. & Integ. Physio. 146. 576-580. https://doi.org/10.1016/j.cbpa.2006.03.017.
Baldo, L., Santos, M. E., & Salzburger, W. (2011) Comparative transcriptomics of Eastern African cichlid fishes shows signs of positive selection and a large contribution of untranslated regions to genetic diversity. Genome Biology and Evolution. 1, 443-455. https://doi.org/10.1093/gbe/evr047.
Bao, L., Tian, C., Liu., Shikai., Zhang, Y., Elaswad, A., Yuan, Z., Khalil, K., Sol, F., Yang, Y., Zhou, T., Li, N., Tan, S., Zeng, Q., Liu, Y., Li, Y., Gao, D., Dunham, R., Davis, K., Waldbieser, G., & Liu, Z. (2019). The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish. BMC biology. 17(1), 1-16. https://doi.org/10.1186/s12915-019-0627-7.
Berset-Brandli, L., Jaquiery, S. D., & Perrin, N. (2006). A sex-specific marker reveals male heterogamety in European tree frogs. Molecular biology and Evolution. 23, 1104–1106. https://doi.org/10.1093/molbev/msk011.
Bufrem, L., & Prates, Y. (2005). O saber científico registrado e as práticas de mensuração da informação. Ciência da Informação. 34(2), 9-25. https://doi.org/10.1590/s0100-19652005000200002.
Carreiro, C. R., Furtado-Neto, M., Mesquita, P., & Bezerra, T. (2011). Sex determination in the Giant fish of Amazon Basin, Arapaima gigas (Osteoglossiformes, Arapaimatidae), using laparoscopy. Acta Amazonica. 41(3), 415-419. https://doi.org/10.1590/s0044-59672011000300012.
Castello, L. (2004). A method to count pirarucu Arapaima gigas: fishers, assessment, and management. North American Journal of Fisheries Management. 24 (2), 379-389. https://doi.org/10.1577/m02-024.1.
Castro, J. P. (2019). Expressão de genes candidatos à determinação sexual em Astyanax scabripinnis (Teleostei: Characidae) em animais com e sem cromossomos B. Tese de doutorado. Universidade Federal de São Carlos, São Carlos SP.
Cheng, S. L. (2012). Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology. 14(1), 120-128. https://doi.org/10.1007/s10126-011-9395-2.
Chu-Koo, F., Dugué, R. M., Aguilar, M. A., Daza, A. C., Bocanegra, F. A., Veintemilla, C. C., Duponchelle, F., Renno, J. F., Tello, S., & Nuñez, J. (2009). Gender determination in the Paiche or Pirarucu (Arapaima gigas) using plasma vitellogenin, 17β-estradiol, and 11-ketotestosterone levels. Fish Physiology and Biochemistry. 35(1). https://doi.org/10.1007/s10695-008-9211-8.
Clabaut, C., Salzburger, W., & Meyer, A., (2005). Comparative phylogenetic analyses of the adaptive radiation of Lake Tanganyika cichlid fish: nuclear sequences are less homoplasious but also less informative than mitochondrial DNA. Journal of Molecular Evolution. 61, 666-681. https://doi.org/10.1007/s00239-004-0217-2.
Cnaani A, & Levavi-Sivan B. (2009). Sexual development in fish, practical applications for aquaculture. PubMed. 164-75. 10.1159/000223080.
Cruz, P. R., Affonso, I., & Gomes, L. C. (2016). Ecologia de ictioplâncton: uma abordagem cienciométrica. Oecologia Australis, 20 (4).
Devlin R. H. & Nagahama Y. (2002). Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 208. 191-364. https://doi.org/10.1016/s0044-8486(02)00057-1.
Du, K., Wuertz S., Adolfi M., & Kneitz S. (2019). The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system. Scientific reports. 9(1), 1-11. https://doi.org/10.1038/s41598-019-41457-x.
Dugué, R. (2008). Purification and assay of Arapaima gigas vitellogenin: potential use for sex determination. Cybium. 32(2), 111-111. https://doi.org/10.17268/sci.agropecu.2017.04.02.
FAO. (2018). The state of world fisheries and aquaculture 2018 - Meeting the sustainable development goals. FAO Fisheries and Aquaculture Technical Paper, Rome, Italy, p. 227.
Fowler, B. L. S. & Buonaccorsi, V. P. (2016). Genomic characterization of sex-identifcation markers in Sebastes carnatus and Sebastes chrysomelas rockfshes. Molecular ecology. 25, 2165–2175. https://doi.org/10.1111/mec.13594.
Gamble, T. (2016). Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Molecular ecology. 25, 2114-2116. https://doi.org/10.1111/mec.13648.
Gui J. F. & Zhu Z. Y. (2012). Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chinese Science Bulletin. 57, 1751–1760. https://doi.org/10.1007/s11434-012-5213-0.
Imbiriba, E. P., Lourenço Junior, J., Carvalho, L., Uliana, D., & Brito Filho, L. (1996). Criação de pirarucu. Embrapa - SPI, Coleção Criar, 93p., Belém. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/100639
Ituassú, D. R., Filho, M. P., Roubach, R., Crescêncio, R., Cavero, B. A., & Gandra, A. L. (2005). Níveis de proteína bruta para juvenis de pirarucu. Pesquisa Agropecuária Brasileira. 40, 255-259. https://doi.org/10.1590/s0100-204x2005000300009.
Jappe, A. (2007). Explaining international collaboration in global environmental change research. Scientometrics, 71(3), 367-390. https://akjournals.com/view/journals/11192/71/3/article-p367.xml
Kondo, M. & Nanda, I. (2009). Sex Determination and Sex Chromosome Evolution: Insights from Medaka. SXD. 3, 88–98. https://doi.org/10.1159/000223074.
Lamatsch, D. K., Adolfsson, F., & Alistair, M. (2015). A transcriptome derived female-specific marker from the invasive western mosquito fish (Gambusia affinis). PLoS One, 10(2), 118-214. https://doi.org/10.1371/journal.pone.0118214.
Li, M., Yunlv, S., & Zhao, J. (2015). A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS genetics. 11(11), 100-108. https://doi.org/10.1371/journal.pgen.1005678.
Lima, A. F., Alves, R. R., & Torati, L. S. (2020). Efficiency of color pattern as a method for sex identification in Arapaima gigas (Schinz, 1822). Pan-American Journal of Aquatic Sciences. 15(2), 87-92.
Lin, A., Xiao, S., & Xu, S. (2017). Identification of a male-specific DNA marker in the large yellow croaker (Larimichthys crocea). Aquaculture. (480), 116-122. https://doi.org/10.1016/j.aquaculture.2017.08.009.
Liu, B., Zhang, S., & Chang, C. C. (2018). Emerging Pollutants - Part II: Treatment. Water Environment Research, 90(10), 1792–1820. https://doi.org/10.2175/106143018x15289915807443.
Loureiro, A. J. S. (2007). O Amazonas na época imperial. Ed. Valer, 70p., Manaus.
Martínez, P., Vias, A. M., & Sanchez, L. (2014). Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Frontiers in genetics. 5, 340. https://doi.org/10.3389/fgene.2014.00340.
Mei, J., & Gui, J. (2015). Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Life Science. 58, 124–136. https://doi.org/10.1007/s11427-014-4797-9.
Mugnaini, R., Jannuzzi, P. M., & Quoniam L. (2004). Indicadores bibliométricos da produção científica brasileira: uma análise a partir da base Pascal. Ciência da Informação, 33(2), 123-131. https://doi.org/10.1590/s0100-19652004000200013.
Nanda, I., Kondo, M., Hornung, U., & Asakawa, S. (2002). A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. PNAS. 99, 11778–11783. https://doi.org/10.1073/pnas.182314699.
Nelson, J. S. (2016). Fishes of the World. John Wiley & Sons, 752p.
Nuñez, J., Chu-koo, F., Berland, M., & Arévalo, L. (2011). Reproductive success and fry production of the paiche or pirarucu, Arapaima gigas (Schinz), in the region of Iquitos, Perú. Aquaculture Research. 42, 815-822. https://doi.org/10.1111/j.1365-2109.2011.02886.x.
Ou, M., Yang, C., Luo, Q., & Huang, R. (2017). An NGS-based approach for the identification of sex-specific markers in snakehead (Channa argus). Oncotarget, 8, 98733–98744. https://doi.org/10.18632/oncotarget.21924.
Palaiokostas, C., Bekaert, M., Khan, M., & Taggart, J. (2013). Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. PloS one. 8(7), 68389. https://doi.org/10.1371/journal.pone.0068389.
Palaiokostas, C., Bekaert, M., Khan, M., & Taggart, J. (2015). A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus). BMC genomics. 16(1), 1-10. https://doi.org/10.1186/s12864-015-1383-x.
Piferrer, F., Ribas, L., & Díaz, N. (2012). Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Marine biotechnology, 14(5), 591–604. https://doi.org/10.1007/s10126-012-9445-4.
Ponzoni, R., Nguyen, N., Khaw, H., & Hamzah H. (2011). Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish center with the GIFT strain. Aquaculture. 3(1), 27-41. https://doi.org/10.1111/j.1753-5131.2010.01041.x.
Purcell, C., Seetharam, A., Snodgrass, O., & García, S. (2018). Insights into teleost sex determination from the Seriola dorsalis genome assembly. BMC Genomics. 19(1), 31. https://doi.org/10.1186/s12864-017-4403-1.
Rondeau, E., Messmer, A., Sanderson, D., & Jantzen, S. (2013). Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene. BMC Genomics. 14, 452. https://doi.org/10.1186/1471-2164-14-452.
Ross, J., Urton, J., Boland, J., Shapiro, M. D., & Peiche, C. L. (2009). Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genetics. 5(2), https://doi.org/10.1371/journal.pgen.1000391.
Sandra, G. E. & Norma, M. M. (2010). Sexual determination and differentiation in teleost fish. Reviews in Fish Biology and Fisheries. 20 (1), 101-121.
Shoukang, Z., Zheng, J., Zhang, J., & Wang, Z. (2018). Cytogenetic characterization and description of an X1X1X2X2/X1X2Y sex chromosome system in Collichthys lucidus (Richardson, 1844). Acta Oceanologica Sinica. 37(4), 34-39. https://doi.org/10.1007/s13131-018-1152-1.
Spinak, E. (1998). Indicadores cienciométricos. Ciência da Informação, Brasília. 27(2).
Sturmbauer, C., Salzburger, W., Duftner, N., & Schelly, R. (2010). Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Reviews in Fish Biology and Fisheries. 57(1),266-284. https://doi.org/10.1016/j.ympev.2010.06.018.
Suda, A., Nishiki, I., Iwasaki, Y., & Matsuura, A. (2019). Improvement of the Pacific bluefin tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers. Scientific Reports. 9(1), 1-12. https://doi.org/10.1038/s41598-019-50978-4.
Tanaka, K., Takehana, Y., Naruse, K., & Hamaguchi, S. (2007). Evidence for different origins of sex chromosomes in closely related oryzias fishes: substitution of the master sex-determining gene. Genetics. 177(4), 2075. https://doi.org/10.1534/genetics.107.075598.
Taslima, K., Wehner, S., Taggart, J., & Verdal, H. (2020). Sex determination in the GIFT strain of tilapia is controlled by a locus in linkage group 23. BMC genetics. 21(1), 1-15. https://doi.org/10.1186/s12863-020-00853-3.
Teixeira, P. M. M. & Megid Neto, J. (2006). Investigando a pesquisa educacional: Um estudo enfocando dissertações e teses sobre o ensino de biologia no Brasil. Investigações em Ensino de Ciências, 11(2), 261-282.
Torati, L., Lima, A., & Kirschnik, L. (2019). Endoscopy and cannulation as non-invasive tools to identify sex and monitor reproductive development in Arapaima gigas. Copeia. 107(2), 287-296. https://doi.org/10.1643/ot-18-127.
Torati, L., Varges, A., & Galvão, J. (2016). Endoscopy application in broodstock management of Arapaima gigas (Schinz, 1822). Journal of applied ichthyology. 32(2), 353-355. https://doi.org/10.1111/jai.12988.
Verbeek, A., Debackere, K., & Luwel, M. (2002). Measuring progress and evolution in science and technology – I: the multiple uses of bibliometric indicators. International Journal of Management Reviews. 4(2), 179-211. https://doi.org/10.1111/1468-2370.00083.
Watanabe, L., Gomes, F., Vianez, J., & Nunes, M. (2018). De novo transcriptome based on next-generation sequencing reveals candidate genes with sex-specific expression in Arapaima gigas (Schinz, 1822), an ancient Amazonian freshwater fish. PloS one. 13 (10), 0206379. https://doi.org/10.1371/journal.pone.0206379.
Weber, G. & Lee, C. (2014). Current and future assisted reproductive technologies for fish species. Current and Future Reproductive Technologies and World Food Production. 33-76, 2014. https://doi.org/10.1007/978-1-4614-8887-3_3.
Xu, D., Lou, B., Xu, H., & Li, S. (2013). Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus. Marine Biotechnology. 15(2), 221-229. https://doi.org/10.1007/s10126-012-9480-1.
Yano, A. (2012). An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchusmy kiss. Current biology. 22 (15), 1423-1428. https://doi.org/10.3410/f.717952911.793458466.
Zhang X., Liu W., Wang J., Tian H., Wang W., & Ru S. (2018) Quantitative analysis of in-vivo responses of reproductive and thyroid endpoints in male goldfish exposed to monocrotophos pesticide. Comp Biochem Physiol C Toxicol Pharmacol. 211, 41–47. https://doi.org/10.1016/j.cbpc.2018.05.010.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Alêssa Ferreira Souza; Hélen Clarice Chaves Costa ; Jonatas da Silva Castro ; Francisco José Lopes Cajado; Carlos Riedel Porto Carreiro ; Erivânia Gomes Teixeira ; Julia Marcon Costa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.