Exploración del efecto antitumoral de las nanopartículas de plata en el cáncer oral y cutáneo in vivo: Revisión sistemática y metaanálisis
DOI:
https://doi.org/10.33448/rsd-v13i4.45505Palabras clave:
Compuestos de Plata; Melanoma; Agente Antitumoral.Resumen
Este estudio tuvo como objetivo analizar el efecto antitumoral in vivo de las nanopartículas de plata (AgNPs) contra el cáncer oral y de piel. Se siguieron las directrices PRISMA y se realizó un registro en PROSPERO. Se realizó una búsqueda en bases de datos en septiembre de 2023. Los datos se analizaron mediante el método de la varianza inversa con un modelo de efectos aleatorios. Todos los estudios evaluaron la eficacia antitumoral frente al melanoma, y 21 días después del tratamiento con AgNPs se observó una reducción del volumen tumoral SMD -6,58; PI [-9,82, -3,34]). La administración de AgNPs en forma inyectable y tópica fue eficaz para reducir los tumores, el eritema y prevenir las metástasis sin causar efectos secundarios. Concluimos que las AgNPs mostraron acción antitumoral contra el melanoma en ratones al reducir el volumen tumoral y prevenir la proliferación celular y la metástasis.
Citas
Alali, A., Hosseini-Abari, A., Bahrami, A., & Yazdan Mehr, M. (2023). Biosynthesis of Copper Oxide and Silver Nanoparticles by Bacillus Spores and Evaluation of the Feasibility of Their Use in Antimicrobial Paints. Materials (Basel), 16: 4670. https://doi.org/10.3390/ma16134670
Alamer, F. A., & Beyari, R. F. (2022). Overview of the Influence of Silver, Gold, and Titanium Nanoparticles on the Physical Properties of PEDOT:PSS-Coated Cotton Fabrics. Nanomaterials, 12:1609. https://doi.org/10.3390/nano12091609
Alkhalaf, M. I., Hussein, R. H., & Hamza, A. (2020). Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci, 27:2410–2419. https://doi.org/10.1016/j.sjbs.2020.05.005
Sanfelice, R. A. S., Silva, T. F., Tomiotto-Pellissier, F. et al. (2022). Biogenic silver nanoparticles reduce Toxoplasma gondii infection and proliferation in RAW 264.7 macrophages by inducing tumor necrosis factor-alpha and reactive oxygen species production in the cells. Microbes Infect, 24:104971. https://doi.org/10.1016/j.micinf.2022.104971
Bai, H., Bosch, J. J., & Heindl, L. M. (2023). Current management of uveal melanoma: A review. Clin Exp Ophthalmol, 51:484–494. https://doi.org/10.1111/ceo.14214
Bansod, S. D., Bawaskar, M. S., Gade, A. K., & Rai, M. K. (2015). Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: Treatment and prevention strategies. IET Nanobiotechnology, 9:165–171. https://doi.org/10.1049/iet-nbt.2014.0042
Canaparo, R., Foglietta, F., Limongi, T., & Serpe L. (2021). Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials (Basel), 14:1–14. https://doi.org/10.3390/ma14010053
Danciu, C., Pinzaru, I., Coricovac, D. et al. (2019). Betulin silver nanoparticles qualify as efficient antimelanoma agents in in vitro and in vivo studies. Eur J Pharm Biopharm, 134:1–19. https://doi.org/10.1016/j.ejpb.2018.11.006
Drevon, D., Fursa, S. R., & Malcolm, A.L. (2017) Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav Modif, 41:323–339. https://doi.org/10.1177/0145445516673998
Gao, H., Fan, P., Xu, Q. et al. (2015). In Vitro and in Vivo Antitumor Activity of Silver Nanoparticles on B16 Melanoma. Nano, 15:1–14. https://doi.org/10.1142/S1793292020501635
Hooijmans, C. R., Rovers, M. M, De Vries, R. B. M., et al. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol, 14:1–9. https://doi.org/10.1186/1471-2288-14-43
Kaabipour, S., & Hemmati, S. (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J Nanotechnol, 12:102–136.
Li, F., Zheng, Z., Chen, W. et al. (2023). Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat, 68:100938. https://doi.org/10.1016/j.drup.2023.100938
Li, Y., Liao, Q., Hou, W., & Qin, L. (2023). Silver-Based Surface Plasmon Sensors: Fabrication and Applications. Int J Mol Sci, 24: 4142. https://doi.org/10.3390/ijms24044142
Luo, D., Wan, X., Liu, J., & Tong T. (2018). Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res, 27:1785–1805. https://doi.org/10.1177/0962280216669183
Miranda, R. R., Sampaio, I., & Zucolotto, V. (2022). Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces, 210:112254. https://doi.org/10.1016/j.colsurfb.2021.112254
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Syst Rev, 5:1–10. https://doi.org/10.1186/s13643-016-0384-4
Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 29:372. https://doi.org/10.1136/bmj.n71
Parveen, A., Kulkarni, N., Yalagatti, M., Abbaraju, V., & Deshpande, R. (2018). In vivo efficacy of biocompatible silver nanoparticles cream for empirical wound healing. J Tissue Viability, 27:257–261. https://doi.org/10.1016/j.jtv.2018.08.007
Rana, K., Kumar, P. S., Chauhan, S., & Preet, S. (2022). Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. Int J Pharm, 620:121744. https://doi.org/10.1016/j.ijpharm.2022.121744
Rashid, S., Shaughnessy, M., & Tsao, H. (2023). Melanoma classification and management in the era of molecular medicine. Dermatol Clin, 41:49–63. https://doi.org/10.1016/j.det.2022.07.017
Schwiebs, A., & Radeke, H. H. (2017). Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis. Anticancer Agents Med Chem, 18:645–651. https://doi.org/10.3390/plants10122663
Sergi, M. C., Filoni, E., Triggiano, G. et al. (2023). Mucosal Melanoma: Epidemiology, Clinical Features, and Treatment. Curr Oncol Rep, 1:0123456789. https://doi.org/10.1007/s11912-023-01453-x
Shabatina, T. I., Vernaya, O. I., Shimanovskiy, N. L., & Melnikov, M. Y. (2023). Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics, 15:118115. https://doi.org/10.3390/pharmaceutics15041181
Shinde, V. R., Revi, N., Murugappan, S., Singh, S. P., & Rengan, A. K. (2022). Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther, 39:102915. https://doi.org/10.1016/j.pdpdt.2022.102915
Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA Cancer J Clin, 73:17–48. https://doi.org/10.3322/caac.21763
Sierra Rivera, C. A., Franco Molina, M. A., Mendoza Gamboa, E. et al. (2013). Potential of colloidal or silver nanoparticles to reduce the growth of B16F10 melanoma tumors. African J Microbiol 7:2745–2750. https://doi.org/10.5897/AJMR12.1968
Silva, J. M. C., Teixeira, A. B., & Reis, A. C. (2023). Silver-based gels for oral and skin infections: antimicrobial effect and physicochemical stability. Future Microbiol, 18:985-996. https://doi.org/10.2217/fmb-2023-0034
Sivadasan, D., Ramakrishnan, K., Mahendran, J. et al. (2023). Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int J Mol Sci, 24: 6199. https://doi.org/10.3390/ijms24076199
Tambunlertchai, S., Geary, S. M., Naguib, Y. W., & Salem, A. K. (2023). Investigating silver nanoparticles and resiquimod as a local melanoma treatment. Eur J Pharm Biopharm, 183:1–12. https://doi.org/10.1016/j.ejpb.2022.12.011
Torres-Cavazos, Z., Franco-Molina, M.A., Santana-Krímskaya, S. E. et al. (2020). In Vivo Evaluation of the Antitumor and Immunogenic Properties of Silver and Sodium Dichloroacetate Combination against Melanoma. J Nanomater, 741019. https://doi.org/10.1155/2020/3741019
Twilley, D., Thipe, V. C., Kishore, N. et al. (2022). Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis. Pharmaceuticals (Basel), 15:1497. https://doi.org/10.3390/ph15121497
Valenzuela-Salas, L. M., Girón-Vázquez, N. G., García-Ramos, J. C. et al. (2019). Antiproliferative and antitumour effect of nongenotoxic silver nanoparticles on melanoma models. Oxid Med Cell Longev, 25:4528241. https://doi.org/10.1155/2019/4528241
Wang, H., Tran, T. T., Duong, K. T. et al. (2022). Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm, 4487–4505. https://doi.org/10.1021/acs.molpharmaceut.2c00775
Zeng, L., Brignardello-Petersen, R., & Guyatt, G. (2021). When applying GRADE, how do we decide the target of certainty of evidence rating? Evid Based Ment Health, 24:121–123. https://doi.org/10.1136/ebmental-2020-300170
Zheng, D. X., Soldozy, S., Mulligan, K. M. et al. (2023). Epidemiology, management, and treatment outcomes of metastatic spinal melanoma. World Neurosurg, 18:100156. https://doi.org/10.1016%2Fj.wnsx.2023.100156
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 João Marcos Carvalho-Silva; Andréa Cândido dos Reis
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.