Explorando o efeito antitumoral das nanopartículas de prata em câncer oral e de pele in vivo: Revisão sistemática e meta-análise

Autores

DOI:

https://doi.org/10.33448/rsd-v13i4.45505

Palavras-chave:

Melanoma; Compostos de Prata; Agente Antitumoral.

Resumo

Este estudo teve como objetivo analisar o efeito antitumoral in vivo das nanopartículas de prata (AgNPs) contra o câncer oral e de pele. Foram seguidas as diretrizes PRISMA e realizado registro no PROSPERO. A pesquisa nos bancos de dados foi realizada em setembro de 2023. Os dados foram analisados usando o método de variância inversa com um modelo de efeito aleatório. Todos os estudos avaliaram a eficácia antitumoral contra o melanoma, e 21 dias após o tratamento com AgNPs mostraram uma redução no volume do tumor (SMD -6,58; PI [-9,82, -3,34]). A administração de AgNPs na forma injetável e tópica foi eficaz na redução de tumores, eritema e prevenção de metástases sem causar efeitos colaterais. Concluiu-se que as AgNPs apresentaram ação antitumoral contra o melanoma de camundongos, reduzindo o volume do tumor e prevenindo a proliferação celular e a metástase.

Referências

Alali, A., Hosseini-Abari, A., Bahrami, A., & Yazdan Mehr, M. (2023). Biosynthesis of Copper Oxide and Silver Nanoparticles by Bacillus Spores and Evaluation of the Feasibility of Their Use in Antimicrobial Paints. Materials (Basel), 16: 4670. https://doi.org/10.3390/ma16134670

Alamer, F. A., & Beyari, R. F. (2022). Overview of the Influence of Silver, Gold, and Titanium Nanoparticles on the Physical Properties of PEDOT:PSS-Coated Cotton Fabrics. Nanomaterials, 12:1609. https://doi.org/10.3390/nano12091609

Alkhalaf, M. I., Hussein, R. H., & Hamza, A. (2020). Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci, 27:2410–2419. https://doi.org/10.1016/j.sjbs.2020.05.005

Sanfelice, R. A. S., Silva, T. F., Tomiotto-Pellissier, F. et al. (2022). Biogenic silver nanoparticles reduce Toxoplasma gondii infection and proliferation in RAW 264.7 macrophages by inducing tumor necrosis factor-alpha and reactive oxygen species production in the cells. Microbes Infect, 24:104971. https://doi.org/10.1016/j.micinf.2022.104971

Bai, H., Bosch, J. J., & Heindl, L. M. (2023). Current management of uveal melanoma: A review. Clin Exp Ophthalmol, 51:484–494. https://doi.org/10.1111/ceo.14214

Bansod, S. D., Bawaskar, M. S., Gade, A. K., & Rai, M. K. (2015). Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: Treatment and prevention strategies. IET Nanobiotechnology, 9:165–171. https://doi.org/10.1049/iet-nbt.2014.0042

Canaparo, R., Foglietta, F., Limongi, T., & Serpe L. (2021). Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials (Basel), 14:1–14. https://doi.org/10.3390/ma14010053

Danciu, C., Pinzaru, I., Coricovac, D. et al. (2019). Betulin silver nanoparticles qualify as efficient antimelanoma agents in in vitro and in vivo studies. Eur J Pharm Biopharm, 134:1–19. https://doi.org/10.1016/j.ejpb.2018.11.006

Drevon, D., Fursa, S. R., & Malcolm, A.L. (2017) Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav Modif, 41:323–339. https://doi.org/10.1177/0145445516673998

Gao, H., Fan, P., Xu, Q. et al. (2015). In Vitro and in Vivo Antitumor Activity of Silver Nanoparticles on B16 Melanoma. Nano, 15:1–14. https://doi.org/10.1142/S1793292020501635

Hooijmans, C. R., Rovers, M. M, De Vries, R. B. M., et al. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol, 14:1–9. https://doi.org/10.1186/1471-2288-14-43

Kaabipour, S., & Hemmati, S. (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J Nanotechnol, 12:102–136.

Li, F., Zheng, Z., Chen, W. et al. (2023). Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat, 68:100938. https://doi.org/10.1016/j.drup.2023.100938

Li, Y., Liao, Q., Hou, W., & Qin, L. (2023). Silver-Based Surface Plasmon Sensors: Fabrication and Applications. Int J Mol Sci, 24: 4142. https://doi.org/10.3390/ijms24044142

Luo, D., Wan, X., Liu, J., & Tong T. (2018). Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res, 27:1785–1805. https://doi.org/10.1177/0962280216669183

Miranda, R. R., Sampaio, I., & Zucolotto, V. (2022). Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces, 210:112254. https://doi.org/10.1016/j.colsurfb.2021.112254

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Syst Rev, 5:1–10. https://doi.org/10.1186/s13643-016-0384-4

Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 29:372. https://doi.org/10.1136/bmj.n71

Parveen, A., Kulkarni, N., Yalagatti, M., Abbaraju, V., & Deshpande, R. (2018). In vivo efficacy of biocompatible silver nanoparticles cream for empirical wound healing. J Tissue Viability, 27:257–261. https://doi.org/10.1016/j.jtv.2018.08.007

Rana, K., Kumar, P. S., Chauhan, S., & Preet, S. (2022). Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. Int J Pharm, 620:121744. https://doi.org/10.1016/j.ijpharm.2022.121744

Rashid, S., Shaughnessy, M., & Tsao, H. (2023). Melanoma classification and management in the era of molecular medicine. Dermatol Clin, 41:49–63. https://doi.org/10.1016/j.det.2022.07.017

Schwiebs, A., & Radeke, H. H. (2017). Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis. Anticancer Agents Med Chem, 18:645–651. https://doi.org/10.3390/plants10122663

Sergi, M. C., Filoni, E., Triggiano, G. et al. (2023). Mucosal Melanoma: Epidemiology, Clinical Features, and Treatment. Curr Oncol Rep, 1:0123456789. https://doi.org/10.1007/s11912-023-01453-x

Shabatina, T. I., Vernaya, O. I., Shimanovskiy, N. L., & Melnikov, M. Y. (2023). Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics, 15:118115. https://doi.org/10.3390/pharmaceutics15041181

Shinde, V. R., Revi, N., Murugappan, S., Singh, S. P., & Rengan, A. K. (2022). Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther, 39:102915. https://doi.org/10.1016/j.pdpdt.2022.102915

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA Cancer J Clin, 73:17–48. https://doi.org/10.3322/caac.21763

Sierra Rivera, C. A., Franco Molina, M. A., Mendoza Gamboa, E. et al. (2013). Potential of colloidal or silver nanoparticles to reduce the growth of B16F10 melanoma tumors. African J Microbiol 7:2745–2750. https://doi.org/10.5897/AJMR12.1968

Silva, J. M. C., Teixeira, A. B., & Reis, A. C. (2023). Silver-based gels for oral and skin infections: antimicrobial effect and physicochemical stability. Future Microbiol, 18:985-996. https://doi.org/10.2217/fmb-2023-0034

Sivadasan, D., Ramakrishnan, K., Mahendran, J. et al. (2023). Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int J Mol Sci, 24: 6199. https://doi.org/10.3390/ijms24076199

Tambunlertchai, S., Geary, S. M., Naguib, Y. W., & Salem, A. K. (2023). Investigating silver nanoparticles and resiquimod as a local melanoma treatment. Eur J Pharm Biopharm, 183:1–12. https://doi.org/10.1016/j.ejpb.2022.12.011

Torres-Cavazos, Z., Franco-Molina, M.A., Santana-Krímskaya, S. E. et al. (2020). In Vivo Evaluation of the Antitumor and Immunogenic Properties of Silver and Sodium Dichloroacetate Combination against Melanoma. J Nanomater, 741019. https://doi.org/10.1155/2020/3741019

Twilley, D., Thipe, V. C., Kishore, N. et al. (2022). Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis. Pharmaceuticals (Basel), 15:1497. https://doi.org/10.3390/ph15121497

Valenzuela-Salas, L. M., Girón-Vázquez, N. G., García-Ramos, J. C. et al. (2019). Antiproliferative and antitumour effect of nongenotoxic silver nanoparticles on melanoma models. Oxid Med Cell Longev, 25:4528241. https://doi.org/10.1155/2019/4528241

Wang, H., Tran, T. T., Duong, K. T. et al. (2022). Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm, 4487–4505. https://doi.org/10.1021/acs.molpharmaceut.2c00775

Zeng, L., Brignardello-Petersen, R., & Guyatt, G. (2021). When applying GRADE, how do we decide the target of certainty of evidence rating? Evid Based Ment Health, 24:121–123. https://doi.org/10.1136/ebmental-2020-300170

Zheng, D. X., Soldozy, S., Mulligan, K. M. et al. (2023). Epidemiology, management, and treatment outcomes of metastatic spinal melanoma. World Neurosurg, 18:100156. https://doi.org/10.1016%2Fj.wnsx.2023.100156

Downloads

Publicado

16/04/2024

Como Citar

CARVALHO-SILVA, J. M.; REIS, A. C. dos . Explorando o efeito antitumoral das nanopartículas de prata em câncer oral e de pele in vivo: Revisão sistemática e meta-análise. Research, Society and Development, [S. l.], v. 13, n. 4, p. e5913445505, 2024. DOI: 10.33448/rsd-v13i4.45505. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45505. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde