Efectos del gel complejado de naringina/β-ciclodextrina asociado con ultrasonido terapéutico sobre biomarcadores de estrés oxidativo después de lesión musculoesquelética en ratas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v13i6.45940

Palabras clave:

Estrés oxidativo; Fonoforesis; Terapia de ultrasonido.

Resumen

La fonoforese se presenta como una estrategia para aumentar la permeabilidad de los tejidos corporales y, consecuentemente, potenciar la actividad del sistema de defensa antioxidante. En esta perspectiva, este estudio tuvo como objetivo verificar los efectos del gel complejado de naringina/β-ciclodextrina asociado al ultrasonido terapéutico en biomarcadores oxidativos después de una lesión musculoesquelética en ratas. Este es un estudio de laboratorio con un enfoque cuantitativo. Ratas Wistar machos adultas fueron distribuidas en igual proporción en cinco grupos diferentes (n=40): control, lesión muscular, gel complejado de naringina/β-ciclodextrina, ultrasonido terapéutico y ultrasonido terapéutico asociado al gel complejado de naringina/β-ciclodextrina. El músculo gastrocnemio fue lesionado con impacto mecánico. El tratamiento se aplicó en intervalos de 2, 12, 24, 48, 72 y 96 horas después de la lesión. Se evaluaron la peroxidación lipídica, la actividad de la superóxido dismutasa y la actividad de la catalasa. El grupo UTP + NAR mostró una reducción estadísticamente significativa en los niveles de MDA (1,16 ± 0,16 nmolMDA/mg proteína vs 7,22 ± 0,42 nmolMDA/mg proteína; p<0,05), la actividad de SOD (0,04 ± 0,01 SOD/mg de proteína vs 0,79 ± 0,09 U/mg de proteína; p<0,05) y la actividad de CAT (0,006 ± 0,001 CAT/mg de proteína vs 0,622 ± 0,032 U/mg de proteína; p<0,05) en comparación con el grupo no tratado. No hubo diferencia estadísticamente significativa entre los grupos UTP + NAR y NAR en todas las variables analizadas. Estos resultados sugieren que la utilización del gel complejado de naringina/β-ciclodextrina asociado al ultrasonido terapéutico después de una lesión musculoesquelética es eficaz en la atenuación de la peroxidación lipídica y en la potenciación del sistema antioxidante.

Citas

Aebi H. (1984). Catalase in vitro. Methods Enzymol, 105,121–126.

Alam M A, Subhan N, Rahman M M, Uddin S J, Reza H M, & Sarker S D. (2014). Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr., 5(4), 404-17.

Bannister J V, & Calabrese L. (1987). Assays for superoxide dismutase. Methods Biochem Anal, 32,279–312.

Baoge L, VanDen Steen E, Rimbaut S, Philips N, Witvrouw E, Almqvist K F, Vanderstraeten G, & VandenBossche L C. (2012). Treatment of skeletal muscle injury, a Review. ISRN Orthop., 2012, 689-012.

Bharti S, Rani N, Krishnamurthy B, & Arya D S. (2014). Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med, 80(06): 437-451.

Bianchetti P, Tassinary J F, & Stulp S. (2014). Effects of therapeutic ultrasound on the retention and maintenance of the antioxidant activity of the glycolic extract of Arnica montana: an in vitro study. Ciência e Natura, 36, 718-723.

Dalle-Donne I, Rossi R, Colombo R, Giustarini D, & Milzani A. (2006). Biomarkers of oxisative damage in human disease. Clinical Chemistry, 52:4 01-623.

Draper HH, Hadley M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol, 186:421–431.

Gangwar M, Gautan M K, Sharma A K, Tripathi Y B, Goel R K, & Nat G. (2014). Antioxidant Capacity and Radical Scavenging Effect of Polyphenol Rich Mallotus philippenensis Fruit Extract on Human Erythrocytes: An In Vitro Study. Scientific World Journal , 2014, 279-451.

Gottlieb O R, Borin M R M B, Pagotto C L A C, & Zocher D H T. (1998). Biodiversidade: o enfoque interdisciplinar brasileiro. Ciênc. saúde coletiva [online], 3, 97-102.

Grotto D, Santa Maria L, Valentini J, Paniz C, Schmitt G, & Garica S C. (2009). Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova, 32:169-174.

Gurney B, Wascher D, Schenck R, Tennison, & Jaramillo B. (2011). Absorption of Hydrocortisone Acetate in Human Connective Tissue Using Phonophoresis. Sports Health, 3(4), 346-51.

Jagetia G C, & Lalrinengi C. (2017). Naringin, a grape fruit bioflavonoid protects mice boné marrow cells against the doxorubicin-induced oxidative stress. SOJ Biochem, 3(1), 1-9.

Jorge L L, Feres C C, & Teles V E. (2010). Topical preparations for pain relief: efficacy and patient adherence. J Pain Res., 20(4), 11-24.

Kanth P L, & Elango V. (2015). Efficacy of phonophoresis therapy in plasma antioxidant status on freund’s adjuvant induced arthritic rats. The Pharma Innovation Journal., 4(10), 19-23.

Kim W J, Kang J Y, Kwon D K, Song Y J, & Lee K H. (2011). Effects of α-Lipoic Acid Supplementation on Malondialdehyde Contents and Superoxide Dismutase in Rat Skeletal Muscles. Food Science and Biotechnology, 20, 1133.

Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, & Dulak J. (2015). The role of oxidative stress in skeletal muscle injury and regeneration, focus on antioxidant enzymes. J Muscle Res Cell Motil, 36, 377–393.

Lee K R, B.A, Cronenwett J L, Shlafer M, Corpron C, & Zelenock G B. (1987). Effect of Superoxide Dismutase plus Catalase on Ca*+ Transport in lschemic and Reperfused Skeletal Muscle. Journal of Surgical Research, 42, 24-32.

Li G, Feng X, & Wang S. (2005). Effects of Cu/Zn Superoxide Dismutase on Strain InjuryInduced Oxidative Damage to Skeletal Muscle in Rats. Physiol. Res., 54, 193-199.

Luft N. (2003). Efeitos dos flavonoides naringina e rutina no metabolismo lipídico em cobaias e aves. [tese de pós graduação]. Disponível em: https://www.locus.ufv.br/bitstream/handle/123456789/8822/texto%20completo.pdf?sequence=1&isAllowed=y.

Montalti CS, Souza N V C K L, Rodrigues N C, Fernandes K R, Toma R L, & Renno A C M. (2013). Effects of low-intensity pulsed ultrasound on injured skeletal muscle. Braz J Phys Ther., 17(4), 343-350.

Powers S K, & Jackson M J. (2008). Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol Rev., 88(4), 1243–1276.

Puntel GO. (2010). Efeitos da crioterapia em modelos de contusão e isquemia/reperfusão sanguínea em músculo de ratos. [tese de doutotado]. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/4423/PUNTEL%2C%20GUSTAVO%20ORIONE.pdf?sequence=1&isAllowed=y

Rajadurai M, & Prince PSM. (2007). Preventive effect of narigin on isoproterenol-induced cardiotoxicity in wistar rats: na in vivo and in vitro study. Toxicology, 232, 216-225.

Rahusen F T G, Weinhold P S, & Almekinders L C. (2004). Non steroidal antiinflammatory drugs and acetaminophen in the treatment of an acute muscle injury. Am J Sports Med., 32(8), 1856-9.

Rizzi C F, Mauriz J L, Corrêa D S F, Moreira A J, Zettler C G, Filippin L I, Marroni N P, & Gallego J G. (2006). Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kB signaling pathway in traumatized muscle. Lasers Surg Med, 38, 704–713.

Saliba S, Mistry D J, Perrin D H, Gieck J, & Weltman A. (2007). Phonophoresis and the absorption of dexamethasone in the presence of an occlusive dressing. J Athl Train, 42, 349–354.

Santana D V S, Trindade G G G, Menezes P P, Quintans-Júnior L J, & Araújo A A S. (2018). Investigação espectral e caracterização físico-química de complexos de inclusão de naringina em HP-β-CD.

Shu B, Yang Z, Li X, & Zhang L. (2012). Effect of Different Intensity Pulsed Ultrasound on the Restoration of Rat Skeletal Muscle Contusion. Cell Biochem Biophys, 62, 329–336.

Silveira P C L,Victor E G, Schefer D, Silva L A, Streck E L, Paula M M, & Pinho R A. (2010). Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle. Ultrasound in Med. & Biol., 36, 44-50.

Silveira P C L, Victor E G, Notoya F S, Scheffer D L, Silva L, Cantu R B, Martinez V H C, Pinho R A, & Paula M M S. (2016). Effects of phonophoresis with gold nanoparticles on oxidative stress parameters in a traumatic muscle injury model. Drug Deliv., 23(3), 926-32.

Sousa Filho L F, Menezes P P, Santana D V S, Lima B S, Saravanan S, Almeida G K M, Menezes Filho J E, Santos M M B, Araújo A A S, & Oliveira E D. (2018). Effect of pulsed therapeutic ultrasound and diosmin on skeletal muscle oxidative parameters. Ultrasound in Med. & Biol., 44(2), 359–367.

Spiteller G. (2006). Peroxyl radicals, inductors of neurodegenerative and other Inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Biol Med., 41(3), 362-87.

Terahara T, Mitragotri S, Kost J, & Langer A. (2002). Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. International Journal of Pharmaceutics, 235, 35–42.

Treml J, & Smejkal K. (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Review sin Food Science and Food Safety, 15.

Wang L, Shan Y, Chen L, Lin B, Xiong X, Lin L, Jin L. (2016). Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation. Basic Med Sci, 19670-675.

Zama M M S, Ansari M M, Dimri U, Hoque M, Maiti S K, & Kinjavdekar P. (2013). Effect of therapeutic ultrasound and diathermy on oxidant–antioxidant balance in dogs suffering from hind quarter weakness. Journal of Applied Animal Research, 41(1), 82-86.

Oliveira, J. F., Costa, A. G. J., Costa, A. C. S. M., Santana, L. S., Sousa, D. S., & Aquino, M. J. das V. (2023). Scientific and technological prospection on the use of Cannabis sativa (Hemp) in neuropathic patients or with neuropsychiatric disorders. Research, Society and Development, 12(2), e5112236990. https://doi.org/10.33448/rsd-v12i2.36990

Sousa, D. S., Rodrigues, G. C., Gaspar, L. M. A. C., Machado, T. de O. X., Valverde, F. G., Padilha, F. F., & Droppa- Almeida, D. (2021). Scientific and technological prospection study on Myracrodruon urundeuva (aroeira do sertão) and bacterial resistance. Research, Society and Development, 10(11), e138101119505. https://doi.org/10.33448/rsd-v10i11.19505

Publicado

06/06/2024

Cómo citar

SANTANA, C. B. L. .; SOUSA, D. S. .; COSTA, J. I. de G. .; LIMA, D. A. .; OLIVEIRA, E. D. de . Efectos del gel complejado de naringina/β-ciclodextrina asociado con ultrasonido terapéutico sobre biomarcadores de estrés oxidativo después de lesión musculoesquelética en ratas. Research, Society and Development, [S. l.], v. 13, n. 6, p. e0313645940, 2024. DOI: 10.33448/rsd-v13i6.45940. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45940. Acesso em: 5 ene. 2025.

Número

Sección

Ciencias de la salud