Vitamina D y enfermedades infectocontagiosas en la pandemia de COVID-19
DOI:
https://doi.org/10.33448/rsd-v9i7.4614Palabras clave:
SARS; Coronavirus; Tratamiento; H1N1; Influenza.Resumen
La nueva pandemia de la enfermedad coronavirus (COVID-19) surgió a fines de 2019 en Wuhan, China, y se extendió rápidamente por todo el mundo. Teniendo en cuenta su velocidad de transmisión rápida, COVID-19 se ha convertido en una amenaza para la salud pública en todo el mundo. Por lo tanto, se deben proponer ideas objetivas basadas en evidencia científica para el tratamiento de pacientes infectados. La vitamina D es una hormona que juega un papel importante en la regulación de la función del sistema inmune. Las principales fuentes de obtención de vitamina D son los alimentos y el proceso de síntesis en el cuerpo iniciado en la piel, a través de la fotorreacción mediada por la luz solar, en la que la pre-vitamina D se isomeriza en pro-vitamina D. Posteriormente, se metaboliza en el hígado a 25-hidroxivitamina D, y convertida al riñón en su forma activa, 1,25-dihidroxivitamina D. Debido a su papel clave en la mejora de la respuesta inmune, la vitamina D puede afectar positivamente el tratamiento de diversas enfermedades infecciosas, tales como influenza y H1N1. Esta revisión tiene como objetivo informar sobre el uso de vitamina D como un posible aliado en el tratamiento de COVID-19. Los estudios incluidos en esta revisión indican que la vitamina D puede tener funciones inmunomoduladoras y antiinflamatorias, lo que beneficia significativamente el tratamiento de las infecciones virales. Se recomienda que se realicen ensayos clínicos aleatorios y grandes estudios de población para ayudar a dilucidar el papel efectivo de la vitamina D en el tratamiento de pacientes con COVID-19.
Citas
Agier, J., Efenberger, M., & Brzezińska-Błaszczyk, E. (2015). Review paper cathelicidin impact on inflammatory cells. Central European Journal of Immunology, 2, 225–235. https://doi.org/10.5114/ceji.2015.51359
Alipio, M. (2020). Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-2019). SSRN Electronic Journal, 1–9. https://doi.org/10.2139/ssrn.3571484
Barlow, P. G., Svoboda, P., Mackellar, A., Nash, A. A., York, I. A., Pohl, J., … Donis, R. O. (2011). Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE, 6(10), e25333. https://doi.org/10.1371/journal.pone.0025333
Bikle, D. D., Malmstroem, S., & Schwartz, J. (2017). Current controversies: are free vitamin metabolite levels a more accurate assessment of Vitamin D status than total levels? Endocrinology and Metabolism Clinics of North America, 46(4), 901–918. https://doi.org/10.1016/j.ecl.2017.07.013
Bikle, D. D., Patzek, S., & Wang, Y. (2018). Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review. Bone Reports, 8, 255–267. https://doi.org/10.1016/j.bonr.2018.02.004
Borella, E., Nesher, G., Israeli, E., & Shoenfeld, Y. (2014). Vitamin D: a new anti‐infective agent? Annals of the New York Academy of Sciences, 1317(1), 76–83. https://doi.org/doi: 10.1111/nyas.12321
Carlberg, C. (2017). Molecular endocrinology of vitamin D on the epigenome level. Molecular and Cellular Endocrinology, 453, 14–21. https://doi.org/10.1016/j.mce.2017.03.016
Castranova, V., Asgharian, B., Sayre, P., Virginia, W., & Carolina, N. (2014). Metabolic Regulation of Immune Responses Kirthana. Annu Rev Immunol, 32(1), 609–634. https://doi.org/10.1080/10937404.2015.1051611.INHALATION
Chen, S., Sims, G. P., Chen, X. X., Gu, Y. Y., Chen, S., & Lipsky, P. E. (2007). Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. The Journal of Immunology, 179(3), 1634–1647. https://doi.org/10.4049/jimmunol.179.3.1634
Chiang, C. M., Ismaeel, A., Griffis, R. B., & Weems, S. (2016). Effects of vitamin D supplementation on muscle strength in athletes: A systematic review. Journal of Strength and Conditioning Research, 31(2), 566–574.
Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015
Colunga Biancatelli, R. M. L., Berrill, M., & Marik, P. E. (2019). The antiviral properties of vitamin C. Expert Review of Anti-Infective Therapy, 18(2), 99–101. https://doi.org/10.1080/14787210.2020.1706483
Czaja, A. J., & Montano-Loza, A. J. (2018). Evolving role of Vitamin D in immune-mediated disease and its implications in autoimmune hepatitis. Digestive Diseases and Sciences, 64(2), 324–344. https://doi.org/10.1007/s10620-018-5351-6
Fisher, S. A., Rahimzadeh, M., Brierley, C., Gration, B., Doree, C., Kimber, C. E., … Roberts, D. J. (2019). The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review. PLOS ONE, 14(9), e0222313. https://doi.org/10.1371/journal.pone.0222313
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. https://doi.org/10.3390/nu12010236
Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020a). Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), E988. https://doi.org/10.20944/preprints202003.0235.v2
Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020b). Vitamin D supplementation could prevent and treat influenza, coronavirus, and pneumonia infections. Nutrients, 12(988). https://doi.org/10.20944/preprints202003.0235.v1
Gröber, U., & Kisters, K. (2012). Influence of drugs on vitamin D and calcium metabolism. Dermato-Endocrinology, 4(2), 158–166. https://doi.org/10.4161/derm.20731
Gruber–Bzura, B. M. (2018). Vitamin D and influenza — prevention or therapy? International Journal of Molecular Sciences, 19(8), 2419. https://doi.org/10.3390/ijms19082419
Guillot, X., Semerano, L., Saidenberg-Kermanac’h, N., Falgarone, G., & Boissier, M.-C. (2010). Vitamin D and inflammation. Joint Bone Spine, 77(6), 552–557. https://doi.org/10.1016/j.jbspin.2010.09.018
Haroon, M., & FitzGerald, O. (2011). Vitamin D and its emerging role in immunopathology. Clinical Rheumatology, 31(2), 199–202. https://doi.org/10.1007/s10067-011-1880-5
Haussler, M. R., Jurutka, P. W., Mizwicki, M., & Norman, A. W. (2011). Vitamin D receptor (VDR) - mediated actions of 1α,25(OH) 2vitamin D3: Genomic and non-genomic mechanisms. Best Practice & Research Clinical Endocrinology & Metabolism, 25(4), 543–559. https://doi.org/10.1016/j.beem.2011.05.010
Haussler, M. R., Whitfield, G. K., Kaneko, I., Haussler, C. A., Hsieh, D., Hsieh, J.-C., & Jurutka, P. W. (2012). Molecular mechanisms of vitamin D action. Calcified Tissue International, 92(2), 77–98. https://doi.org/10.1007/s00223-012-9619-0
Holick, M. F. (1995). Vitamin D: Photobiology, metabolism, and clinical applications. In De Groot LC, ed. Endocrinology (7th ed., pp. 990–1011). Philadelphia: Elsevier.
Hornsby, E., Pfeffer, P. E., Laranjo, N., Cruikshank, W., Tuzova, M., Litonjua, A. A., … Hawrylowicz, C. (2018). Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. Journal of Allergy and Clinical Immunology, 141(1), 269-278.e1. https://doi.org/10.1016/j.jaci.2017.02.039
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5
Katona, P., & Katona‐Apte, J. (2008). The interaction between nutrition and infection. Clinical Infectious Diseases, 46(10), 1582–1588. https://doi.org/10.1086/587658
Kimball, A., Hatfield, K. M., Arons, M., James, A., Taylor, J., Spicer, K., … Jernigan, J. A. (2020). Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility - King County, Washington, March 2020. MMWR. Morbidity and Mortality Weekly Report, 69(13), 377–381. https://doi.org/10.15585/mmwr.mm6913e1
Lei, G. S., Zhang, C., Cheng, B.-H., & Lee, C.-H. (2017). Mechanisms of action of vitamin D as supplemental therapy for pneumocystis pneumonia. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/aac.01226-17
Lin, R. (2016). Crosstalk between Vitamin D metabolism, VDR signalling, and innate immunity. BioMed Research International, 2016, 1–5. https://doi.org/10.1155/2016/1375858
MacLaughlin, J., & Holick, M. F. (1985). Aging decreases the capacity of human skin to produce vitamin D3. Journal of Clinical Investigation, 76(4), 1536–1538. https://doi.org/10.1172/jci112134
Martínez-Moreno, J., Hernandez, J. C., & Urcuqui-Inchima, S. (2019). Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Molecular and Cellular Biochemistry, 464(1–2), 169–180. https://doi.org/10.1007/s11010-019-03658-w
Mazon, L. M., Komuchena, K. S., Roik, A. K., Wieczorkievicz, A. M., & Ditterich, R. G. (2016). Perfil epidemiológico de pacientes com síndrome gripal e síndrome respiratória aguda grave. Saúde Em Revista, 16(43), 37–44. https://doi.org/10.15600/2238-1244/sr.v16n43p37-44
McCartney, D. M., & Byrne, D. G. (2020). Optimisation of vitamin D status for enhanced immuno-protection against COVID-19. Ir Med J., 113(4), 58.
McKenna, N. J., Cooney, A. J., DeMayo, F. J., Downes, M., Glass, C. K., Lanz, R. B., … O’Malley, B. W. (2009). Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Molecular Endocrinology, 23(6), 740–746. https://doi.org/10.1210/me.2009-0135
Mousavi, S., Bereswill, S., & Heimesaat, M. M. (2019). Immunomodulatory and antimicrobial effects of vitamin C. European Journal of Microbiology and Immunology, 9(3), 73–79. https://doi.org/10.1556/1886.2019.00016
Neumann, G., & Kawaoka, Y. (2015). Transmission of Infleunza A viruses. Virology, (480), 234–246. https://doi.org/10.1016/j.virol.2015.03.009.Transmission
Oda, Y., Sihlbom, C., Chalkley, R. J., Huang, L., Rachez, C., Chang, C.-P. B., … Bikle, D. D. (2003). Two distinct coactivators, DRIP/mediator and SRC/p160, are differentially involved in Vitamin D receptor transactivation during keratinocyte differentiation. Molecular Endocrinology, 17(11), 2329–2339. https://doi.org/10.1210/me.2003-0063
Oliveira, A., Sofia Vilela, S., Warkentin, S., Araújo, J., Ramos, E., & Lopes, C. (2020). Da emergência de um novo vírus humano à disseminação global de uma nova doença. ISPUP.
Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., … Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1620. https://doi.org/10.1038/s41467-020-15562-9
Prosser, D. E., & Jones, G. (2004). Enzymes involved in the activation and inactivation of vitamin D. Trends in Biochemical Sciences, 29(12), 664–673. https://doi.org/10.1016/j.tibs.2004.10.005
Rokni, M., Ghasemi, V., & Tavakoli, Z. (2020). Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Reviews in Medical Virology, 1–6. https://doi.org/10.1002/rmv.2107
Rondanelli, M., Miccono, A., Lamburghini, S., Avanzato, I., Riva, A., Allegrini, P., … Perna, S. (2018). Self-care for common colds: the pivotal role of Vitamin D, Vitamin C, zinc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds — practical advice on dosages . Evidence-Based Complementary and Alternative Medicine, 2018, 1–36. https://doi.org/10.1155/2018/5813095
Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., … Inouye, K. (2000). Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. European Journal of Biochemistry, 267(20), 6158–6165. https://doi.org/10.1046/j.1432-1327.2000.01680.x
Schwalfenberg, G. K. (2010). A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Molecular Nutrition & Food Research, 55(1), 96–108. https://doi.org/10.1002/mnfr.201000174
Schwartz, J. B., Gallagher, J. C., & Jorde, R. (2018). Determination of free 25 (OH) D concentrations and their relationships to total 25 (OH) D in multiple clinical populations. J Clin Endocrinol Metab, 103(9), 3278–3288.
Scully, C., Georgakopoulou, E. A., & Hassona, Y. (2017). The immune system: Basis of so much health and disease: 4. immunocytes. Dental Update, 44(5), 436–442. https://doi.org/10.12968/denu.2017.44.5.436
Sharifi, A., Vahedi, H., Nedjat, S., Rafiei, H., & Hosseinzadeh‐Attar, M. J. (2019). Effect of single‐dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo‐controlled trial. APMIS, 127(10), 681–687. https://doi.org/10.1111/apm.12982
Sociedade Brasileira de Pediatria. (2014). Deficiência de vitamina D em crianças a adolescentes. Sociedade Brasileira de Pediatria, 99(1), 1132–1141.
Taubenberger, J. K., & Morens, D. M. (2008). The pathology of influenza virus infections. Annu Rev Pathol, 3(1), 499–522.
Teymoori-Rad, M., Shokri, F., Salimi, V., & Marashi, S. M. (2019). The interplay between vitamin D and viral infections. Reviews in Medical Virology, 29(2), e2032. https://doi.org/10.1002/rmv.2032
Trochoutsou, A. I., Kloukina, V., Samitas, K., & Xanthou, G. (2015). Vitamin-D in the immune system: genomic and non-genomic actions. Mini-Reviews in Medicinal Chemistry, 15(11). https://doi.org/10.2174/1389557515666150519110830
Vásárhelyi, B., Sátori, A., Olajos, F., Szabó, A., & Bekő, G. (2011). Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period. Orvosi Hetilap, 152(32), 1272–1277. https://doi.org/10.1556/oh.2011.29187
Whitfield, G. K. (1996). Vitamin D receptors from patients with resistance to 1,25- dihydroxyvitamin D3: point mutations confer reduced transactivation in response to ligand and impaired interaction with the retinoid X receptor heterodimeric partner. Molecular Endocrinology, 10(12), 1617–1631. https://doi.org/10.1210/me.10.12.1617
Wimalawansa, S. J. (2020). Global epidemic of coronavirus–COVID-19: What we can do to minimze risks. Eur J Biomed Pharm Sci, 7, 432–438.
Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of selected vitamins and trace elements to immune function. Annals of Nutrition and Metabolism, 51(4), 301–323. https://doi.org/10.1159/000107673
Wu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03160
Yan, C. H., Faraji, F., Prajapati, D. P., Boone, C. E., & DeConde, A. S. (2020). Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. International Forum of Allergy & Rhinology, 1–18. https://doi.org/10.1002/alr.22579
Zhang, J., Xie, B., & Hashimoto, K. (2020). Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, S0889-1591(20)30589-4. https://doi.org/10.1016/j.bbi.2020.04.046
Zhao, Y., Ran, Z., Jiang, Q., Hu, N., Yu, B., Zhu, L., & Chen, D. (2019). Vitamin D alleviates rotavirus infection through a Microrna-155-5p mediated regulation of the TBK1/IRF3 signaling pathway in vivo and in vitro. International Journal of Molecular Sciences, 20(14), 3562. https://doi.org/10.3390/ijms20143562
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.