Fake news en el ámbito de la salud: Un estudio sobre la difusión de noticias falsas en redes sociales y la necesidad de ajustes en la legislación brasileña

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i6.48982

Palabras clave:

Redes sociales; Salud pública; Legislación vigente; Noticias falsas; Reforma de la ley.

Resumen

El objetivo de este estudio es identificar características y desarrollar modelos que ayuden a comprender cómo se propagan las noticias falsas en las redes sociales, señalando mecanismos útiles para la adecuación de la legislación en la lucha contra su difusión, en defensa de la salud pública. El método de investigación se dividió en tres etapas: (1) revisión de la legislación actual relacionada con la difusión de noticias falsas; (2) aplicación y análisis de respuestas a un cuestionario sociocultural mediante análisis factoriales multivariados y aprendizaje automático para identificar posibles relaciones entre el comportamiento de compartir información falsa y características socioculturales; y (3) identificación de parámetros asociados a la propagación de fake news en redes sociales utilizando un enfoque de redes complejas. Los resultados indican que la legislación brasileña aún no cuenta con mecanismos para caracterizar el dolo en la difusión de fake news en redes sociales. Las respuestas al cuestionario muestran que la propagación de estas noticias no se debe principalmente a la falta de conocimiento. El análisis de la propagación en redes sociales reveló que dicha diseminación no sigue el patrón típico de redes libres de escala, lo que sugiere un impulso artificial del contenido. Además, el análisis de parámetros mediante teoría de redes complejas permite identificar objetivamente si la propagación ocurre de forma natural o artificial. La responsabilización legal por la difusión dolosa de noticias falsas en redes sociales requiere una adecuación de la legislación vigente.

Citas

Akamine, C. T. & Yamamoto, R. K. (2009). Estudo dirigido: estatística descritiva. (3ed). Editora Érica.

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), Artigo 1. https://doi.org/10.1103/RevModPhys.74.47

Almeida, P. C. de B. (2010). Liberdade de expressão e liberdade de informação: Uma análise sobre suas distinções. Revista Ambito Jurídico, 80. https://ambitojuridico.com.br/liberdade-de-expressao-e-liberdade-de-informacao-uma-analise-sobre-suas-distincoes/

Arnaboldi, V., Conti, M., Passarella, A., & Dunbar, R. I. M. (2017). Online Social Networks and information diffusion: The role of ego networks. Online Social Networks and Media, 1, 44–55. https://doi.org/10.1016/j.osnem.2017.04.001

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), Artigo 5439. https://doi.org/10.1126/science.286.5439.509

Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews. Genetics, 5(2), Artigo 2. https://doi.org/10.1038/nrg1272

Barbuio, R. de C. [UNESP. (2025). Fake News na área de saúde: Um estudo sobre a disseminação de notícias falsas em redes sociais e a necessidade de adequação da legislação brasileira. https://hdl.handle.net/11449/295885

Barthélemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B, 38(2), 163–168. https://doi.org/10.1140/epjb/e2004-00111-4

Bloch, F., Jackson, M. O., & Tebaldi, P. (2023). Centrality measures in networks. Social Choice and Welfare, 61(2), 413–453. https://doi.org/10.1007/s00355-023-01456-4

Brasil. (1941). Decreto-Lei no 3.688, de 3 de outubro de 1941. https://www2.camara.leg.br/legin/fed/declei/1940-1949/decreto-lei-3688-3-outubro-1941-413573-publicacaooriginal-1-pe.html

Brasil. (1988). Constituição da República Federativa do Brasil promulgada em 5 de outubro de 1988: Atualizada até a Emenda Constitucional n. 48, de 10-8-2005. Casa Civil. http://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm

Brasil. (2014). Lei 12.965, de 23 de abril de 2014. Marco Civil da Internet. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2014/lei/l12965.htm

Coronavírus: O que é fake news e o que é verdade sobre a transmissão da doença. ([s.d.]). CNN Brasil. Recuperado 22 de outubro de 2024, de https://www.cnnbrasil.com.br/saude/coronavirus-o-que-e-fake-news-e-o-que-e-verdade-sobre-a-transmissao-da-doenca/

Delmazo, C., & Valente, J. C. L. (2018). Fake news nas redes sociais online: Propagação e reações à desinformação em busca de cliques. Media & Jornalismo, 18(32), 155–169.

Ferreira, J. R. S., Lima, P. R. S., & Souza, E. D. de. (2021). Desinformação, infodemia e caos social: Impactos negativos das fake news no cenário da COVID-19. Em Questão, 27(1), 30–58.

Fox Keller, E. (2005). Revisiting “scale-free” networks. BioEssays, 27(10), 1060–1068. https://doi.org/10.1002/bies.20294

Gasparini, P., Philot, E. A., Pantaleão, S. Q., Torres-Bonfim, N. E. S. M., Kliousoff, A., Quiroz, R. C. N., Perahia, D., Simões, R. P., Magro, A. J., & Scott, A. L. (2023). Unveiling mutation effects on the structural dynamics of the main protease from SARS-CoV-2 with hybrid simulation methods. Journal of Molecular Graphics and Modelling, 121, 108443. https://doi.org/10.1016/j.jmgm.2023.108443

Glez-Peña, D., Lourenço, A., López-Fernández, H., Reboiro-Jato, M., & Fdez-Riverola, F. (2014). Web scraping technologies in an API world. Briefings in Bioinformatics, 15(5), 788–797. https://doi.org/10.1093/bib/bbt026

Goh, K.-I., Oh, E., Jeong, H., Kahng, B., & Kim, D. (2002). Classification of scale-free networks. Proceedings of the National Academy of Sciences, 99(20), 12583–12588. https://doi.org/10.1073/pnas.202301299

Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques. Elsevier.

Kumar, S., Mallik, A., Khetarpal, A., & Panda, B. S. (2022). Influence maximization in social networks using graph embedding and graph neural network. Information Sciences, 607, 1617–1636. https://doi.org/10.1016/j.ins.2022.06.075

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), Artigo 1. https://doi.org/10.18637/jss.v025.i01

Leskovec, J., & Krevl, A. (2014, junho). SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

Luvizutto, G. J., Silva ,Gabrielly Fernanda, Nascimento ,Monalisa Resende, Sousa Santos ,Kelly Cristina, Appelt ,Pablo Andrei, de Moura Neto ,Eduardo, de Souza ,Juli Thomaz, Wincker ,Fernanda Cristina, Miranda ,Luana Aparecida, Hamamoto Filho ,Pedro Tadao, de Souza ,Luciane Aparecida Pascucci Sande, Simões ,Rafael Plana, de Oliveira Vidal ,Edison Iglesias, & and Bazan, R. (2022). Use of artificial intelligence as an instrument of evaluation after stroke: A scoping review based on international classification of functioning, disability and health concept: AI applications for stroke evaluation. Topics in Stroke Rehabilitation, 29(5), 331–346. https://doi.org/10.1080/10749357.2021.1926149

Majeed, A., & Rauf, I. (2020). Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social Networks. Inventions, 5(1), Artigo 1. https://doi.org/10.3390/inventions5010010

Marda, V., & Milan, S. (2018). Wisdom of the Crowd: Multistakeholder Perspectives on the Fake News Debate (SSRN Scholarly Paper 3184458). Social Science Research Network. https://papers.ssrn.com/abstract=3184458

Mendonça, R. F., Freitas, V. G., Aggio, C. de O., & Santos, N. F. dos. (2022). Fake News e o Repertório Contemporâneo de Ação Política. Dados, 66, e20200213. https://doi.org/10.1590/dados.2023.66.2.301

Monari, A. C. P., & Filho, C. B. (2019). Saúde sem Fake News: Estudo e caracterização das informações falsas divulgadas no Canal de Informação e Checagem de Fake News do Ministério da Saúde. Mídia e Cotidiano, 13(1), Artigo 1. https://doi.org/10.22409/ppgmc.v13i1.27618

Nazario de Moraes, L., Tommasini Grotto, R. M., Targino Valente, G., de Carvalho Sampaio, H., Magro, A. J., Fogaça, L., Wolf, I. R., Perahia, D., Faria Silva, G., & Plana Simões, R. (2019). A novel molecular mechanism to explain mutations of the HCV protease associated with resistance against covalently bound inhibitors. Virus Research, 274, 197778. https://doi.org/10.1016/j.virusres.2019.197778

“News you don’t believe”: Audience perspectives on fake news | Reuters Institute for the Study of Journalism. ([s.d.]). https://reutersinstitute.politics.ox.ac.uk/our-research/news-you-dont-believe-audience-perspectives-fake-news

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora da UAB/NTE/UFSM

Pitelli, R. A., Simões, R. P., Pitelli, R. L., Rocha, R. J. da S., Merenda, A. M. P., da Cruz, F. P., Lameirão, A. M. M. dos S., Oliveira Júnior, A. J. de, & Gomes, R. H. M. (2025). Exploratory Analysis on the Chemical Composition of Aquatic Macrophytes in a Water Reservoir—Rio de Janeiro, Brazil. Water, 17(4), Artigo 4. https://doi.org/10.3390/w17040582

Recuero, R., & Gruzd, A. (2019). Cascatas de Fake News Políticas: Um estudo de caso no Twitter. Galáxia (São Paulo), 31–47.

https://doi.org/10.1590/1982-25542019239035

Rosa, T., Delduque, M. C., & Alves, S. M. C. (2023). A pandemia de covid-19 e as fake news: Uma revisão da literatura. Saúde e Sociedade, 32, e220918pt. https://doi.org/10.1590/S0104-12902023220918pt

Shitsuka et al. (2014). Matemática fundamental para a tecnologia. Editora Érica

Simões, R. P., Wolf, I. R., Correa, B. A., & Valente, G. T. (2021). Uncovering patterns of the evolution of genomic sequence entropy and complexity. Molecular Genetics and Genomics, 296(2), 289–298. https://doi.org/10.1007/s00438-020-01729-y

Tomasevicius Filho, E. (2016). Marco Civil da Internet: Uma lei sem conteúdo normativo. Estudos Avançados, 30, 269–285. https://doi.org/10.1590/S0103-40142016.00100017

Wilson, C., Sala, A., Puttaswamy, K. P. N., & Zhao, B. Y. (2012). Beyond Social Graphs: User Interactions in Online Social Networks and their Implications. ACM Trans. Web, 6(4), 17:1-17:31. https://doi.org/10.1145/2382616.2382620

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques (Edição: 4). Morgan Kaufmann.

Wolf, I. R., Simões, R. P., & Valente, G. T. (2021). Three topological features of regulatory networks control life-essential and specialized subsystems. Scientific Reports, 11(1), 24209. https://doi.org/10.1038/s41598-021-03625-w

Publicado

10/06/2025

Cómo citar

BARBUIO, R. de C.; GOMES, R. H. M.; OLIVEIRA, J. C. R.; REIS, E. C. dos; REIS, L. C. dos; SIMÕES, R. P. Fake news en el ámbito de la salud: Un estudio sobre la difusión de noticias falsas en redes sociales y la necesidad de ajustes en la legislación brasileña. Research, Society and Development, [S. l.], v. 14, n. 6, p. e3014648982, 2025. DOI: 10.33448/rsd-v14i6.48982. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48982. Acesso em: 4 jul. 2025.

Número

Sección

Ciencias Humanas y Sociales