Detección de polvo en el panel solar utilizando técnicas de procesamiento por imágenes: Una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.5107

Palabras clave:

Procesamiento de imágenes; Detección de polvo; Panel fotovoltaico.

Resumen

El rendimiento de un panel fotovoltaico se ve afectado por su orientación y inclinación angular con el plano horizontal. Esto ocurre porque estos dos parámetros alteran la cantidad de energía solar recibida por la superficie del panel fotovoltaico. También hay factores ambientales que afectan la producción de energía, un ejemplo es el polvo. Las partículas de polvo acumuladas en la superficie del panel reducen la llegada de luz a los módulos solares, reduciendo la cantidad de energía generada. La limpieza o mitigación de los módulos es importante y, para optimizar estos procesos, se debe llevar a cabo un monitoreo y evaluación constantes. Para aumentar la eficiencia de los paneles fotovoltaicos, se puede considerar el uso de métodos de procesamiento de imágenes para la detección de polvo. Por lo tanto, la creación de un documento que reúna y analice los resultados de diferentes trabajos desarrollados para resolver este problema facilita el acceso a la información, permitiendo una mejor comprensión de lo que ya se ha hecho y cómo se puede mejorar. El objetivo de este artículo es revisar las investigaciones que utilizan técnicas de procesamiento de imágenes para detectar el polvo en los paneles solares, con el fin de recopilar información para ayudar a la investigación en el área y proporcionar inspiración para futuros estudios.

Citas

Abuqaaud, K. A., & Ferrah, A. (2020). A Novel Technique for Detecting and Monitoring Dust and Soil on Solar Photovoltaic Panel. 2020 Advances in Science and Engineering Technology International Conferences (ASET). doi:10.1109/aset48392.2020.9118377.

Aghaei, M., Gandelli, A., Grimaccia, F., Leva, S., & Zich, R. (2015). IR real-time analyses for PV system monitoring by digital image processing techniques. In Event-based control, Communication, and Signal Processing (EBCCSP), 2015 International Conference on., [1–6]. https://doi.org/10.1109/EBCCSP.2015.7300708.

Albuquerque, M. P. de, & Albuquerque, M. P. de. (2000). Processamento de imagens: métodos e análises. Centro Brasileiro de Pesquisas Físicas. http://www.cbpf.br/cat/pdsi/pdf/ProcessamentoImagens.PDF.

Alnaser, N., Othman, M. A., Dakhel, A., Batarseh, I., Lee, J., Najmaii, S., Alothman, A., Shawaikh, H. A., & Alnaser, W. (2018). Comparison between performance of man-made and naturally cleaned PV panels in a middle of a desert. Renewable and Sustainable Energy Reviews, 82, 1048–1055. https://doi.org/10.1016/j.rser.2017.09.058.

Amir, A., Amir, A., Che, H. S., Elkhateb, A., & Rahim, N. A. (2019). Comparative analysis of high voltage gain dc-dc converter topologies for photovoltaic systems. Renewable Energy, 136, 1147 – 1163. https://doi.org/10.1016/j.renene.2018.09.089.

Amr, A. A. R., Hassan, A. A. M., Abdel-Salam, M., & El-Sayed, A. M. (2019). Enhancement of photovoltaic system performance via passive cooling: Theory versus experiment. Renewable Energy, 140, 88–103. https://doi.org/10.1016/j.renene.2019.03.048.

Cai, S., Bao, G., Ma, X., Wu, W., Bian, G.B., Rodrigues, J. J. P. C., & de Albuquerque, V.H.C. (2019). Parameters optimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experimente method. Journal of Cleaner Production, 217, 724–731. https://doi.org/10.1016/j.jclepro.2019.01.135.

Chen, J., Lin, C., & Liu, C. The Efficiency and Performance Detection Algorithm and System Development for Photovoltaic System through use of Thermal Image Processing Technology. (2018). In International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2017), [25-30]. https://doi.org/ 10.1063/1.5044158.

Dutta, S., Pal, S., Mukhopadhyay, S., & Sen, R. (2013) Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6 (3), p. 212–232. https://doi.org/10.1016/j.cirpj.2013.02.005.

Gao, X., Munson, E., Abousleman, G. P., & Si, J. (2015). Automatic solar panel recognition and defect detection using infrared imaging. In Automatic Target Recognition XXV (9476). [94760O] SPIE. https://doi.org/10.1117/12.2179792.

Gonzales, R., & Woods, R. (2007). Digital Image Processing. Pearson. Gosumbonggot, J. (2019). Global Maximum Power Point Tracking under Shading Condition and Hotspot Detection Algorithms for Photovoltaic Systems. Energies, 12 (882). https://doi.org/10.3390.

Guan, Y., Zhang, H., Xiao, B., Zhou, Z., & Yan, X. (2017). In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renewable Energy, 101, 1273–1284. https://doi.org/10.1016/j.renene.2016.10.009.

Hemza, A., Abdeslam, H., Rachid, C., & Aoun, N. (2019). Simplified methods for evaluating the degradation of photovoltaic module and modeling considering partial shading. Measurement, 138, 217 – 224. https://doi.org/10.1016/j.measurement.2019.01.098.

Jaszczur, M. (2019). The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency. Environmental Science and Pollution Research, 26 (9), 8402–8417. https://doi.org/10.1007/s11356-018-1970-x.

Jiang, Y., Lu, L., Ferro, A. R., & Ahmadi, G. (2018). Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Solar Energy, 159, 1031–1036. https://doi.org/10.1016/j.solener.2017.08.083.

Lee, S., An, K. E., Jeon, B. D., Cho, K. Y., Lee, S. J., & Seo, D. (2018). Detecting Faulty Solar Panels Based on Thermal Image Processing. In International Conference on Consumer Electronics (ICCE). https://doi.org/10.1109/ICCE.2018.8326228.

Ma, J., Jiang, H., Bi, Z., Huang, K., & Li, X. (2019). Maximum Power Point Estimation for Photovoltaic Strings Subjected to Partial Shading Scenarios. IEEE Transactions on Industry Applications, 55 (2), 1890–1902. https://doi.org/10.1109/TIA.2018.2882482.

Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. https://doi.org/10.1016/j.rser.2016.01.044.

Mehmood, U., Al-Sulaiman, F. A., & Yilbas, B. (2017). Characterization of dust collected from PV modules in the area of dhahran, kingdom of saudi arabia, and its impact on protective transparent covers for photovoltaic applications. Solar Energy, 141, 203–209. https://doi.org/10.1016/j.solener.2016.11.051.

Pawluk, R. E., Chen, Y., & She, Y. (2018). Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation. Renewable and Sustainable Energy Reviews, 107, 171–182, 2019. https://doi.org/10.1016/j.rser.2018.12.031.

Pereira AS et al (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Accessed on: June, 12th, 2020. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Phoolwani, U. K., Sharma, T., Singh, A., & Gawre, S. K. (2020). IoT Based Solar Panel Analysis using Thermal Imaging. 2020 IEEE International Students’ Conference on Electrical,Electronics and Computer Science (SCEECS). doi:10.1109/sceecs48394.2020.114.

Qasem, H., Mnatsakanyan, A., & Banda, P. (2016). Assessing dust on PV modules using image processing techniques. In 43rd Photovoltaic Specialists Conference (PVSC), [2066–2070]. https://doi.org/10.1109/PVSC.2016.7749993.

Ramos, E. Z., Ho, S., & Yfantis, E. A. (2016). Using spectral decomposition to detect dirty solar panels and minimize impact on energy production. Advances in Image and Video Processing, 3 (6). https://doi.org/10.14738/aivp.36.1710.

Ramos, E. Z., Ramos, M., Moutafis, K., & Yfantis, E. A. (2016). Robot-server architecture for optimizing solar panel power output. Transactions on Machine Learning and Artificial Intelligence, 4 (4). https://doi.org/10.14738/tmlai.44.2141.

Said, S. A., Hassan, G., Walwil, H. M., & Al-Aqeeli, N. (2018). The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renewable and Sustainable Energy Reviews, 82, 743–760. https://doi.org/10.1016/j.rser.2017.09.042.

Salas, V., Olias, E., Barrado, A., & Lazaro, A. (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar energy materials and solar cells, 90 (11), 1555–1578. https://doi.org/10.1016/j.solmat.2005.10.023.

Sarver, T., Al-Qaraghuli, A., & Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/j.rser.2012.12.065.

Sayyah, A., Horenstein, M. N., & Mazumder, M. K. (2014). Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy, 107, 576–604. https://doi.org/10.1016/j.solener.2014.05.030.

Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision. Cengage Learning (3. ed.).

Styszko, K., Jaszczur, M., Teneta, J., Hassan, Q., Burzy, P., & Marcinek, E. (2019). Analysis of the dust deposition on solar photovoltaic modules. Environmental Science and Pollution Research, 26 (9), 8393-8401. https://doi.org/10.1007/s11356-018-1847-z.

Tribak, H., & Zaz, Y. (2019). Dust Soiling Concentration Measurement on Solar Panels based on Image Entropy. 2019 7th International Renewable and Sustainable Energy Conference (IRSEC). doi:10.1109/irsec48032.2019.9078286.

Tsanakas, J., & Botsaris, P. (2012). An infrared thermographic approach as a hot-spot detection tool for photovoltaic modules using image histogram and line profile analysis. International Journal of Condition Monitoring, 2 (1), 22–30. https://doi.org/10.1784/204764212800028842.

Unluturk, M., Kulaksiz, A. A., & Unluturk, A. (2019). Image Processing-based Assessment of Dust Accumulation on Photovoltaic Modules. 2019 1st Global Power, Energy and Communication Conference (GPECOM). doi:10.1109/gpecom.2019.8778578.

Yao, Y. Y., & Hu, Y. (2017). Recognition and Location of Solar Panels Based on Machine Vision. In 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). [7–12]. https://doi.org/10.1109/ACIRS.2017.7986055.

Yap, W.K., Galet, R., & Yeo, K.C. (2015). Quantitative Analysis of Dust and Soiling on Solar PV Panels in the Tropics Utilizing Image-Processing Methods.In Asia Pacific Solar Research Conference. http://espace.cdu.edu.au/view/cdu:58767.

Yfantis, E., & Fayed, A. (2014). A camera system for detecting dust and other deposits on solar panels. Advances in Image and Video Processing, 2 (5). https://doi.org/10.14738/aivp.25.411.

Descargas

Publicado

06/07/2020

Cómo citar

DANTAS, G. M.; MENDES, O. L. C.; MAIA, S. M.; DE ALEXANDRIA, A. R. Detección de polvo en el panel solar utilizando técnicas de procesamiento por imágenes: Una revisión. Research, Society and Development, [S. l.], v. 9, n. 8, p. e321985107, 2020. DOI: 10.33448/rsd-v9i8.5107. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5107. Acesso em: 2 jul. 2024.

Número

Sección

Revisiones