Morteros de cemento con agregado de tereftalato de polietileno: una revisión de su sostenibilidad

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.5640

Palabras clave:

Agregado ligero de residuo de PET; Construcción sostenible; Materiales de construcción; ComposicionMorteros de cemento con agregado de tereftalato de polietileno; una revisión de su sostenibilidad

Resumen

El alto consumo de productos plásticos genera varios impactos, principalmente asociados con sus residuos. Debido a sus características, las posibilidades de eliminación de estos residuos se reducen, por lo que su uso como subproductos constituye la mejor solución para el manejo de estos residuos. En este contexto, ha surgido una investigación que utiliza productos plásticos de desecho, como el tereftalato de polietileno (PET) posconsumo, como un sustituto del agregado natural de productos de cemento. La producción de estos materiales pretende trabajar en paralelo con dos objetivos socioambientales: la reducción del consumo de agregados naturales y la reutilización de residuos plásticos en materiales de construcción. Este trabajo presentará datos relacionados con la investigación sobre la producción de morteros cementosos con reemplazo parcial de arena natural por residuos de PET de agregado ligero (ALRP) con el objetivo de realizar el estado del arte contribuyendo a la base metodológica de futuras investigaciones sobre el tema.. Para ello, se realizaron búsquedas sistemáticas en las bases de datos ScienceDirect, Web of Science y Scopus, utilizando descriptores, operadores lógicos y restricción temporal. Además de presentar los principales datos de investigación, se abordará la importancia de los problemas asociados con el tema y los parámetros que debe cumplir este nuevo material ecológico, basado en los conceptos de construcción sostenible.

Biografía del autor/a

Nathana Luiza Pinto de Lima, Instituto Federal de Educación, Ciencia y Tecnología de RN

Junta Académica de Construcción Civil

Renata Carla Tavares dos Santos Felipe, Instituto Federal de Educación, Ciencia y Tecnología de RN

Junta Académica de Industria

Raimundo Nonato Barbosa Felipe, Instituto Federal de Educación, Ciencia y Tecnología de RN

Junta Académica de Industria

Citas

Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F.J., Dominguez, A. O., & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution. 244, 153–164. DOI: 10.1016/j.envpol.2018.10.039.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631-4643.

Benavides, P.T., Dunn, J.B., Han, J.; Biddy, M., & Markham, J. (2018). Exploring comparative energy and environmental benefits of virgin, recycled, and bio-derived PET bottles. ACS Sustainable Chemical & Engineering, 6(8), 9725-9733. DOI: 10.1021/acssuschemeng.8b00750.

Berge, B., Butters, C., & Henley F. (2009). The Ecology of Building Materials (2nd ed; Filip Henley), Woburn/MA: Architectural Press.

Bourdeau, L. (1999). Sustainable development and the future of construction: a comparison of visions from various countries. Building Research & Information, 27(6), 354-366. DOI: 10.1080/096132199369183.

Burroughs, S., & Růžička, J. (2019). The use of natural materials for construction projects – social aspects of sustainable building: Case Studies from Australia and Europe. IOP Conference Series: Earth and Environmental Science, 290. DOI: 10.1088/1755-1315/290/1/012009.

Choi, Y., Moon, D., Kim, Y., & Lachemi, M. (2009). Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materials, 23(8), 2829-2835. DOI: 10.1016/j.conbuildmat.2009.02.036.

Da Silva, A., de Brito, J., & Veiga, M. (2014). Incorporation of fine plastic aggregates in rendering mortars. Construction and Building Materials, 71, 226–236. DOI: 10.1016/j.conbuildmat.2014.08.026.

Da Silva, L. R., Gama, K. N. C., Salles, P. V., & Braga, F. C. S. (2019). Concreto com cinza de casca de arroz ( CCA) e resíduos de construção e demolição (RCD). Research, Society and Development, 8(4). DOI: 10.33448/rsd-v8i4.861.

Detomi, A., Filho, S. L., Panzera, T. H., Schiavon, M. A., Silva, V. R. V., & Scarpa, F. (2016), A., Filho, S. L., Panzera, T. H., Schiavon, M. A., Silva, V. R. V., & Scarpa, F. (2016). Replacement of Quartz in Cementitious Composites Using PET Particles: A Statistical Analysis of the Physical and Mechanical Properties. Journal of Materials in Civil Engineering, 28(1). DOI: 10.1061/(ASCE)MT.1943-5533.0001358.

Du Plessis, C. (2001). Agenda 21 for sustainable construction for developing countries. Pretoria, South Africa: CSIR Building and Construction Technology.

Ferreira, N. S. A. (2002). As pesquisas denominadas “Estado da Arte”. Educação & Sociedade, 23(79), 257-272. DOI: 10.1590/S0101-73302002000300013.

Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Waste Management, 30(6), 1101-1106. DOI: 10.1016/j.wasman.2010.01.030.

Gavriletea, M. D. (2017). Environmental impacts of sand exploitation. Analysis of sand market. Sustainability, 9(7), 1118. DOI: 10.3390/su9071118.

Ge, Z., Yue, H., & Sun, R. (2015). Properties of mortar produced with recycled clay brick aggregate and PET. Construction and Building Materials, 93, 851-856. DOI: 10.1016/j.conbuildmat.2015.05.081.

Gouasmi, M. T., Benosman, A., Taibi, H., Belbachir, M., & Senhadji, Y. (2016). Les Propriétés physico-thermiques des mortiers à base des agrégats composites. Journal of Materials and Environmental Science, 7(2), 409-415.

Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Management, 30(11), 2312-2320. DOI: 10.1016/j.wasman.2010.03.028.

John, V. M.; Agopyan, V.; Sjostrom, C. (2002). Durability in the built environment and sustainability in developing countries. Int. Conf. on Durability of Building Materials and Components, Brisbane, Queensland , Australian, 9.

John, G., Clements-Croome, D., & Jeronimidis, G. (2005). Sustainable building solutions: a review of lessons from the natural world. Building and Environment, 40(3), 319-328. DOI: 10.1016/j.buildenv.2004.05.011.

Kim, S., Yi, N. H., Kim, H. Y., Kim, J. J., & Song, Y. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232-240. DOI: 10.1016/j.cemconcomp.2009.11.002.

Laville, S., & Taylor, M. (28 jun, 2017). A million bottles a minute: world's plastic binge 'as dangerous as climate change'. The Gurdian.

Lebreton, L., & Andrady, A. (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1), 1-11. DOI: 10.1057/s41599-018-0212-7.

Lee, H., Kunz, A., Shim, W. J., & Walther, B. A. (2019). Microplastic contamination of table salts from Taiwan, including a global review. Scientific Reports, 9(1). 10145. DOI: 10.1038/s41598-019-46417-z.

Li, X., Ling, T., & Mo, K. H. (2020). Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete – A review. Construction and Building Materials, 240 DOI: 10.1016/j.conbuildmat.2019.117869.

Liu, K., Wang, X., Wei, N., Song, Z., & Li, Daoji. (2019). Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health, Environment International, 132. DOI: 10.1016/j.envint.2019.105127.

Luangcharoenrat, C., Intrachooto, S., Peansupap, V., & Sutthinarakorn, W. (2019) Factors Influencing Construction Waste Generation in Building Construction: Thailand’s Perspective. Sustainability, 11(13), 3638. DOI: 10.3390/su11133638.

Malholtra, V. M. (2002) Introduction: Sustainable development and concrete technology. ACI Concrete International, 24(7), 22.

Medineckiene, M., Zavadskas, E.K., & Turskis, Z. (2011). Dwelling selection by applying fuzzy game theory. Archives of Civil and Mechanical Engineering, 11(3), 681-697. DOI: 10.1016/S1644-9665(12)60109-5

Mohammed, A. A. & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244. DOI: 10.1016/j.conbuildmat.2020.118350.

Nicolella, M., Landolfi, R., Pino, A., & Scognamillo, C. (2019). Comparative evaluations of sustainability, durability and resilience of external envelopes for environmentally efficient buildings. IOP Conference Series: Earth and Environmental Science, 296. DOI: 10.1088/1755-1315/296/1/012023.

Ostle, C., Thompson, R.C., Broughton, D., Gregory, L., Wootton, M., & Johns, D. G. (2019). The rise in ocean plastics evidenced from a 60-year time series. Nature Communications, 10(1), 1622. DOI: 10.1038/s41467-019-09506-1.

Reis, J. M. L., & Carneiro, E.P. (2012). Evaluation of PET waste aggregates in polymer mortars, Construction and Building Materials, 27(1), 107-111. DOI: 10.1016/j.conbuildmat.2011.08.020

Safi, B., Saidi, M., Aboutaleb, D., & Maallem, M. (2013). The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Construction and Building Materials, 43, 436-442. DOI: 10.1016/j.conbuildmat.2013.02.049.

Saikia, N., & Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Construction and Building Materials, 34, 385-401. DOI: 10.1016/j.conbuildmat.2012.02.066.

Santos, C. A., Lucena, M. S., Moraes, W. S., Silva, L. C., Silva, D. E. C., Serra, M. A. A. O. & Façanha Filho, P. F. (2020). Composite material of mortar and polymer: a sustainable option for civil construction and reuse of waste tires in the city of Açailândia, Brazil. Research, Society and Development, 9(7), 1-15. DOI: http://dx.doi.org/10.33448/rsd-v9i7.4591.

Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835-1852. DOI: 10.1016/j.wasman.2007.09.011.

Silva, D. A., Betioli, A. M., Gleize, P. J. P., Roman, H. R., Gómez, L. A., & Ribeiro, J. L. D. (2005). Degradation of recycled PET fibers in Portland cement-based materials, Cement and Concrete Research, 35(9), 1741-1746. DOI: 10.1016/j.cemconres.2004.10.040.

Sinha, A., Gupta, R., & Kutnar, A. (2013). Sustainable development and green buildings (Održivi razvoj i zelena gradnja). Drvna industrija, 64, 45-53.

Soares, M. (1989). Alfabetização no Brasil – O Estado do conhecimento. Brasília: INEP/MEC.

Sulyman M., Haponiuk J., & Formela K. (2015). Utilization of recycled polyethylene terephthalate (pet) as construction material in civil engineering: A review. International Journal of Environmental Science and Development, 7(2), 100-108. DOI: 10.7763/IJESD.2016.V7.749.

Tetu, S., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L., Moore, L., & Paulsen, I. (2019). Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Communications Biology, 2, 184. DOI: 10.1038/s42003-019-0410-x.

Thomas, L. M., & Moosvi, S. A. (2020). Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Materials Today: Proceedings, 2020. DOI:10.1016/j.matpr.2020.03.025.

Torres, A., Brandt, J., & Liu, J. (2017). A Looming tragedy of the sand commons: Increasing sand extraction, trade, and consumption pose global sustainability challenges. Science, 357(6355), 970-971. DOI: 10.1126/science.aao0503.

Trotter, B., Ramsperger, A., Raab, P., Haberstroh, J., & Laforsch, C. (2019). Plastic waste interferes with chemical communication in aquatic ecosystems. Scientific Reports, 9(1), 1-8. DOI: 10.1038/s41598-019-41677-1

United Nations. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. New York, United States: United Nations.

United Nations. (2017, june). Factsheet: Marine pollution. The Ocean Conference, New York, United States.

United Nations Environment Program. (2019). Sand and sustainability: Finding new solutions for environmental governance of global sand resources. Geneva, Switzerland: United Nations Environment Programme.

United Nation Environment, & International Energy Agency (2017): Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report 2017. ISBN: 978-92-807-3686-1.

Vidales, J. M. M., Hernández, L. N., López, J. I. T., Flores, E. E. M., & Hernández, L. S. (2014). Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Construction and Building Materials, 65, 376-383. DOI: 10.1016/j.conbuildmat.2014.04.114.

Descargas

Publicado

18/07/2020

Cómo citar

LIMA, N. L. P. de; FELIPE, R. C. T. dos S.; FELIPE, R. N. B. Morteros de cemento con agregado de tereftalato de polietileno: una revisión de su sostenibilidad. Research, Society and Development, [S. l.], v. 9, n. 8, p. e513985640, 2020. DOI: 10.33448/rsd-v9i8.5640. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5640. Acesso em: 27 sep. 2024.

Número

Sección

Ingenierías