Argamassas cimentícias com uso de agregado de polietileno tereftalato: uma revisão sobre sua sustentabilidade

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.5640

Palavras-chave:

Agregado leve de resíduo PET; Construção sustentável; Materiais de construção; Compósitos.

Resumo

O alto consumo de produtos plásticos gera vários impactos, principalmente associados aos seus resíduos. Devido às suas características, as possibilidades de descarte desses resíduos são reduzidas, de modo que seu uso como subprodutos constitui a melhor solução para o gerenciamento desses resíduos. Nesse contexto, surgiram pesquisas que utilizam resíduos de produtos plásticos, como o polietileno tereftalato (PET) pós-consumo, como substituto do agregado natural em produtos cimentícios. A produção desses materiais pretende trabalhar em paralelo dois objetivos socioambientais: a redução do consumo de agregados naturais e a reutilização de resíduos plásticos em materiais de construção. Este trabalho apresentará dados relacionados a pesquisas sobre a produção de argamassas cimentícias com substituição parcial de areia natural por agregado leve de resíduos PET (ALRP) objetivando a realização do estado da arte contribuindo para o embasamento metodológico de futuras pesquisas acerca do tema. Para isso, foram realizadas pesquisas sistemáticas nas bases de dados ScienceDirect, Web of Science e Scopus, através do uso de descritores, operadores lógicos e aplicação de restrição temporal. Além de apresentar os principais dados da pesquisa, será abordada a importância dos problemas associados ao tema e os parâmetros a serem atendidos por esse novo material ecológico, com base nos conceitos de construção sustentável.

Biografia do Autor

Nathana Luiza Pinto de Lima, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

Diretoria acadêmica de Construção Civil

Renata Carla Tavares dos Santos Felipe, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

Diretoria Acadêmica de Indústria - Engenharia Mecânica/Materiais Compósitos

Raimundo Nonato Barbosa Felipe, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

Diretoria Acadêmica de Indústria - Engenharia Mecânica/Materiais Compósitos

Referências

Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F.J., Dominguez, A. O., & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution. 244, 153–164. DOI: 10.1016/j.envpol.2018.10.039.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631-4643.

Benavides, P.T., Dunn, J.B., Han, J.; Biddy, M., & Markham, J. (2018). Exploring comparative energy and environmental benefits of virgin, recycled, and bio-derived PET bottles. ACS Sustainable Chemical & Engineering, 6(8), 9725-9733. DOI: 10.1021/acssuschemeng.8b00750.

Berge, B., Butters, C., & Henley F. (2009). The Ecology of Building Materials (2nd ed; Filip Henley), Woburn/MA: Architectural Press.

Bourdeau, L. (1999). Sustainable development and the future of construction: a comparison of visions from various countries. Building Research & Information, 27(6), 354-366. DOI: 10.1080/096132199369183.

Burroughs, S., & Růžička, J. (2019). The use of natural materials for construction projects – social aspects of sustainable building: Case Studies from Australia and Europe. IOP Conference Series: Earth and Environmental Science, 290. DOI: 10.1088/1755-1315/290/1/012009.

Choi, Y., Moon, D., Kim, Y., & Lachemi, M. (2009). Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materials, 23(8), 2829-2835. DOI: 10.1016/j.conbuildmat.2009.02.036.

Da Silva, A., de Brito, J., & Veiga, M. (2014). Incorporation of fine plastic aggregates in rendering mortars. Construction and Building Materials, 71, 226–236. DOI: 10.1016/j.conbuildmat.2014.08.026.

Da Silva, L. R., Gama, K. N. C., Salles, P. V., & Braga, F. C. S. (2019). Concreto com cinza de casca de arroz ( CCA) e resíduos de construção e demolição (RCD). Research, Society and Development, 8(4). DOI: 10.33448/rsd-v8i4.861.

Detomi, A., Filho, S. L., Panzera, T. H., Schiavon, M. A., Silva, V. R. V., & Scarpa, F. (2016), A., Filho, S. L., Panzera, T. H., Schiavon, M. A., Silva, V. R. V., & Scarpa, F. (2016). Replacement of Quartz in Cementitious Composites Using PET Particles: A Statistical Analysis of the Physical and Mechanical Properties. Journal of Materials in Civil Engineering, 28(1). DOI: 10.1061/(ASCE)MT.1943-5533.0001358.

Du Plessis, C. (2001). Agenda 21 for sustainable construction for developing countries. Pretoria, South Africa: CSIR Building and Construction Technology.

Ferreira, N. S. A. (2002). As pesquisas denominadas “Estado da Arte”. Educação & Sociedade, 23(79), 257-272. DOI: 10.1590/S0101-73302002000300013.

Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Waste Management, 30(6), 1101-1106. DOI: 10.1016/j.wasman.2010.01.030.

Gavriletea, M. D. (2017). Environmental impacts of sand exploitation. Analysis of sand market. Sustainability, 9(7), 1118. DOI: 10.3390/su9071118.

Ge, Z., Yue, H., & Sun, R. (2015). Properties of mortar produced with recycled clay brick aggregate and PET. Construction and Building Materials, 93, 851-856. DOI: 10.1016/j.conbuildmat.2015.05.081.

Gouasmi, M. T., Benosman, A., Taibi, H., Belbachir, M., & Senhadji, Y. (2016). Les Propriétés physico-thermiques des mortiers à base des agrégats composites. Journal of Materials and Environmental Science, 7(2), 409-415.

Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Management, 30(11), 2312-2320. DOI: 10.1016/j.wasman.2010.03.028.

John, V. M.; Agopyan, V.; Sjostrom, C. (2002). Durability in the built environment and sustainability in developing countries. Int. Conf. on Durability of Building Materials and Components, Brisbane, Queensland , Australian, 9.

John, G., Clements-Croome, D., & Jeronimidis, G. (2005). Sustainable building solutions: a review of lessons from the natural world. Building and Environment, 40(3), 319-328. DOI: 10.1016/j.buildenv.2004.05.011.

Kim, S., Yi, N. H., Kim, H. Y., Kim, J. J., & Song, Y. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232-240. DOI: 10.1016/j.cemconcomp.2009.11.002.

Laville, S., & Taylor, M. (28 jun, 2017). A million bottles a minute: world's plastic binge 'as dangerous as climate change'. The Gurdian.

Lebreton, L., & Andrady, A. (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1), 1-11. DOI: 10.1057/s41599-018-0212-7.

Lee, H., Kunz, A., Shim, W. J., & Walther, B. A. (2019). Microplastic contamination of table salts from Taiwan, including a global review. Scientific Reports, 9(1). 10145. DOI: 10.1038/s41598-019-46417-z.

Li, X., Ling, T., & Mo, K. H. (2020). Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete – A review. Construction and Building Materials, 240 DOI: 10.1016/j.conbuildmat.2019.117869.

Liu, K., Wang, X., Wei, N., Song, Z., & Li, Daoji. (2019). Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health, Environment International, 132. DOI: 10.1016/j.envint.2019.105127.

Luangcharoenrat, C., Intrachooto, S., Peansupap, V., & Sutthinarakorn, W. (2019) Factors Influencing Construction Waste Generation in Building Construction: Thailand’s Perspective. Sustainability, 11(13), 3638. DOI: 10.3390/su11133638.

Malholtra, V. M. (2002) Introduction: Sustainable development and concrete technology. ACI Concrete International, 24(7), 22.

Medineckiene, M., Zavadskas, E.K., & Turskis, Z. (2011). Dwelling selection by applying fuzzy game theory. Archives of Civil and Mechanical Engineering, 11(3), 681-697. DOI: 10.1016/S1644-9665(12)60109-5

Mohammed, A. A. & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244. DOI: 10.1016/j.conbuildmat.2020.118350.

Nicolella, M., Landolfi, R., Pino, A., & Scognamillo, C. (2019). Comparative evaluations of sustainability, durability and resilience of external envelopes for environmentally efficient buildings. IOP Conference Series: Earth and Environmental Science, 296. DOI: 10.1088/1755-1315/296/1/012023.

Ostle, C., Thompson, R.C., Broughton, D., Gregory, L., Wootton, M., & Johns, D. G. (2019). The rise in ocean plastics evidenced from a 60-year time series. Nature Communications, 10(1), 1622. DOI: 10.1038/s41467-019-09506-1.

Reis, J. M. L., & Carneiro, E.P. (2012). Evaluation of PET waste aggregates in polymer mortars, Construction and Building Materials, 27(1), 107-111. DOI: 10.1016/j.conbuildmat.2011.08.020

Safi, B., Saidi, M., Aboutaleb, D., & Maallem, M. (2013). The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Construction and Building Materials, 43, 436-442. DOI: 10.1016/j.conbuildmat.2013.02.049.

Saikia, N., & Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Construction and Building Materials, 34, 385-401. DOI: 10.1016/j.conbuildmat.2012.02.066.

Santos, C. A., Lucena, M. S., Moraes, W. S., Silva, L. C., Silva, D. E. C., Serra, M. A. A. O. & Façanha Filho, P. F. (2020). Composite material of mortar and polymer: a sustainable option for civil construction and reuse of waste tires in the city of Açailândia, Brazil. Research, Society and Development, 9(7), 1-15. DOI: http://dx.doi.org/10.33448/rsd-v9i7.4591.

Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835-1852. DOI: 10.1016/j.wasman.2007.09.011.

Silva, D. A., Betioli, A. M., Gleize, P. J. P., Roman, H. R., Gómez, L. A., & Ribeiro, J. L. D. (2005). Degradation of recycled PET fibers in Portland cement-based materials, Cement and Concrete Research, 35(9), 1741-1746. DOI: 10.1016/j.cemconres.2004.10.040.

Sinha, A., Gupta, R., & Kutnar, A. (2013). Sustainable development and green buildings (Održivi razvoj i zelena gradnja). Drvna industrija, 64, 45-53.

Soares, M. (1989). Alfabetização no Brasil – O Estado do conhecimento. Brasília: INEP/MEC.

Sulyman M., Haponiuk J., & Formela K. (2015). Utilization of recycled polyethylene terephthalate (pet) as construction material in civil engineering: A review. International Journal of Environmental Science and Development, 7(2), 100-108. DOI: 10.7763/IJESD.2016.V7.749.

Tetu, S., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L., Moore, L., & Paulsen, I. (2019). Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Communications Biology, 2, 184. DOI: 10.1038/s42003-019-0410-x.

Thomas, L. M., & Moosvi, S. A. (2020). Hardened properties of binary cement concrete with recycled PET bottle fiber: An experimental study. Materials Today: Proceedings, 2020. DOI:10.1016/j.matpr.2020.03.025.

Torres, A., Brandt, J., & Liu, J. (2017). A Looming tragedy of the sand commons: Increasing sand extraction, trade, and consumption pose global sustainability challenges. Science, 357(6355), 970-971. DOI: 10.1126/science.aao0503.

Trotter, B., Ramsperger, A., Raab, P., Haberstroh, J., & Laforsch, C. (2019). Plastic waste interferes with chemical communication in aquatic ecosystems. Scientific Reports, 9(1), 1-8. DOI: 10.1038/s41598-019-41677-1

United Nations. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. New York, United States: United Nations.

United Nations. (2017, june). Factsheet: Marine pollution. The Ocean Conference, New York, United States.

United Nations Environment Program. (2019). Sand and sustainability: Finding new solutions for environmental governance of global sand resources. Geneva, Switzerland: United Nations Environment Programme.

United Nation Environment, & International Energy Agency (2017): Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report 2017. ISBN: 978-92-807-3686-1.

Vidales, J. M. M., Hernández, L. N., López, J. I. T., Flores, E. E. M., & Hernández, L. S. (2014). Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Construction and Building Materials, 65, 376-383. DOI: 10.1016/j.conbuildmat.2014.04.114.

Downloads

Publicado

18/07/2020

Como Citar

LIMA, N. L. P. de; FELIPE, R. C. T. dos S.; FELIPE, R. N. B. Argamassas cimentícias com uso de agregado de polietileno tereftalato: uma revisão sobre sua sustentabilidade. Research, Society and Development, [S. l.], v. 9, n. 8, p. e513985640, 2020. DOI: 10.33448/rsd-v9i8.5640. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5640. Acesso em: 27 set. 2024.

Edição

Seção

Engenharias