Evaluación de tiempo, temperatura y concentración de disolvente, en la extracción de compuestos bioactivos de la zanahoria (daucus carota)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.6130

Palabras clave:

Alimentos funcionales; Compuestos bioactivos; Mejoramiento.

Resumen

El objetivo de este trabajo fue analizar el contenido de compuestos bioactivos extraídos de la zanahoria, a través de un diseño experimental de 3 factores, 3 niveles y dos puntos axiales, incluido el tiempo de extracción (17-37-57 min), temperatura (30-50-70ºC) y concentración de etanol (50-65-80%). El resultado se expresó como un porcentaje. Con base en los resultados, se puede decir que el tiempo no influyó significativamente en la extracción de compuestos antioxidantes (p> 0.001), y que la temperatura es directamente proporcional al rendimiento. Con respecto a los compuestos fenólicos, solo la temperatura fue significativa, y para los flavonoles, solo el tiempo y la proporción. El uso de etanol como solvente mostró buenos resultados en comparación con los solventes comúnmente utilizados, además de tener la calidad de ser económicamente viable y de grado alimenticio. Otro factor importante fue el pretratamiento de la muestra, que permitió buenos valores de rendimiento en comparación con la literatura.

Biografía del autor/a

Gabrielli Nunes Clímaco, Universidade Estadual de Campinas

Alunda de doutorado do Departamento de Engenharia de Alimentos - FEA/UNICAMP

Citas

Bas, D., & Boyaci, I. H. (2007). Modeling and optimization i: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845.

Brand-Williams, Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol., 28, 25–30.

Delgado-Andrade, C. (2017). Editorial overview: Functional foods and nutrition. Current Opinion in Food Science, 14, vii–viii. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.cofs.2017.02.008

Haq, R. ul, Kumar, P., & Prasad, K. (2016). Physico-chemical, antioxidant and bioactive changes in cortex core sections of carrot (Daucus carota var. Pusa rudhira). Journal of Food Measurement and Characterization, 10(3), 701–708. Springer US.

Hung, P. V., & Duy, T. L. (2012). Effects of drying methods on bioactive compounds of vegetables and correlation between bioactive compounds and their antioxidants. International Food Research Journal, 19(1), 327–332.

Klein, E. J., Santos, K. A., Palú, F., Vieira, M. G. A., & Silva, E. A. da. (2018). Use of supercritical CO2 and ultrasound-assisted extractions to obtain α/β - amyrin-rich extracts from uvaia leaves ( Eugenia pyriformis Cambess .). The Journal of Supercritical Fluids, 137(February), 1–8. Elsevier. Retrieved from https://doi.org/10.1016/j.supflu.2018.02.019

Kraus, A., Annunziata, A., & Vecchio, R. (2017). Sociodemographic Factors Differentiating the Consumer and the Motivations for Functional Food Consumption. Journal of the American College of Nutrition, 36(2), 116–126.

Larrauri, J. a., Rupérez, P., & Saura-Calixto, F. (1997). Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. Journal of Agricultural and Food Chemistry, 45, 1390–1393.

Lima, R. N., Ribeiro, A. S., Cardozo-filho, L., Vedoy, D., & Alves, P. B. (2019). Extraction from Leaves of Piper klotzschianum using Supercritical Carbon Dioxide and Co-Solvents. The Journal of Supercritical Fluids, 147(April 2018), 205–212. Elsevier. Retrieved from

https://doi.org/10.1016/j.supflu.2018.11.006

Manach, C., Milenkovic, D., Van de Wiele, T., Rodriguez-Mateos, A., de Roos, B., Garcia-Conesa, M. T., Landberg, R., et al. (2017). Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular Nutrition and Food Research, 61(6), 1–16.

Mena-García, A., Ruiz-Matute, A. I., Soria, A. C., & Sanz, M. L. (2019). Green techniques for extraction of bioactive carbohydrates. TrAC Trends in Analytical Chemistry, 119, 115612. Elsevier B.V. Retrieved from https://doi.org/10.1016/j.trac.2019.07.023

Nazir, M., Arif, S., Khan, R. S., Nazir, W., Khalid, N., & Maqsood, S. (2019). Opportunities and challenges for functional and medicinal beverages: Current and future trends. Trends in Food Science and Technology, 88(July 2018), 513–526. Elsevier. Retrieved from https://doi.org/10.1016/j.tifs.2019.04.011

Owolade, S. O., Akinrinola, A. O., Popoola, F. O., Aderibigbe, O. R., Ademoyegun, O. T., & Olabode, I. A. (2017). Study on physico-chemical properties , antioxidant activity and shelf stability of carrot ( Daucus carota ) and pineapple ( Ananas comosus ) juice blend. International Food Research Journal, 24(2), 534–540. Retrieved from http://www.ifrj.upm.edu.my

Prakash Maran, J., Manikandan, S., Vigna Nivetha, C., & Dinesh, R. (2017). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry, 10, S1145–S1157. Retrieved from http://dx.doi.org/10.1016/j.arabjc.2013.02.007

Rodrigues, V. H., Melo, M. M. R. De, & Silva, C. M. (2018). Supercritical fluid extraction of Eucalyptus globulus leaves. Experimental and modelling studies of the in fl uence of operating conditions and biomass pretreatment upon yields and kinetics. Separation and Purification Technology, 191(August 2017), 173–181. Elsevier. Retrieved from https://doi.org/10.1016/j.seppur.2017.09.026

Saini, R. K., & Keum, Y. S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240(April 2017), 90–103. Elsevier. Retrieved from http://dx.doi.org/10.1016/j.foodchem.2017.07.099

Song, L., Liu, P., Yan, Y., Huang, Y., Bai, B., Hou, X., & Zhang, L. (2019). Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube ( Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Industrial Crops & Products, 139(June), 111508. Elsevier. Retrieved from https://doi.org/10.1016/j.indcrop.2019.111508

Swamy, G. J., Sangamithra, A., & Chandrasekar, V. (2014). Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box-Behnken design of experiments. Dyes and Pigments, 111, 64–74. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.dyepig.2014.05.028

Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2019). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology. Elsevier Ltd. Retrieved from https://doi.org/10.1016/j.tifs.2019.11.018

Descargas

Publicado

02/08/2020

Cómo citar

CLÍMACO, G. N.; SOUSA, L. C. S. de; BERGAMASCO, R. de C. Evaluación de tiempo, temperatura y concentración de disolvente, en la extracción de compuestos bioactivos de la zanahoria (daucus carota). Research, Society and Development, [S. l.], v. 9, n. 8, p. e922986130, 2020. DOI: 10.33448/rsd-v9i8.6130. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6130. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías