Evaluación de la composición química y el potencial de inhibición del aceite de fusel contra diferentes microorganismos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.6250

Palabras clave:

Proceso industrial; Alcoholes superiores; Metabolismo; Antiséptico

Resumen

El control de la contaminación en el proceso de fermentación es esencial para garantizar la productividad. Para minimizar la carga de contaminantes, se lleva a cabo el tratamiento con ácido y la adición de antibióticos. Sin embargo, en el proceso de producción de etanol en sí, se forman otros alcoholes que dan como resultado una mezcla conocida como aceite de fusel que puede usarse para minimizar la contaminación. Por lo tanto, este estudio tiene como objetivo analizar muestras de aceite de fusel, caracterizar y evaluar el potencial de inhibición de esta sustancia contra diferentes microorganismos. Inicialmente, se realizó una encuesta bibliográfica para identificar la biomasa y comprender las etapas de formación del aceite de fusel. Al mismo tiempo, se analizaron muestras de aceite de fusel con respecto a los parámetros físico-químicos y la composición química. El potencial de inhibición del aceite de fusel se evaluó con la prueba de halo de inhibición utilizando las levaduras Catanduva-1 (Cat-1) y FT-858 y la bacteria Salmonella tiffi (ATCC 14028), Escherichia coli (ATCC 25922), Stafilicoccus aureus (ATCC 25923) y Bacillus sp. La producción de aceite de fusel está directamente relacionada con el metabolismo de la levadura. Las muestras mostraron diferencias en los parámetros físico-químicos y ambas tenían un alto contenido de alcohol isoamílico. La bacteria mostró sensibilidad al aceite de fusel, lo que demuestra que este subproducto puede usarse como agente antiséptico y antibacteriano.

Biografía del autor/a

Maria do Socorro Mascarenhas Santos, Universidade Estadual de Mato Grosso do Sul/UEMS

Programa de Pós-Graduação em Recursos Naturais - PGRN / Centro de Estudos em Recursos Naturais - CERNA

Thiago Luis Aguayo de Castro, Universidade Estadual de Mato Grosso do Sul/UEMS

Graduação em Química Industrial

Margareth Batistote, Universidade Estadual de Mato Grosso do Sul/UEMS

Programa de Pós-Graduação em Recursos Naturais - PGRN / Centro de Estudos em Recursos Naturais - CERNA

Claudia Andrea Lima Cardoso, Universidade Estadual de Mato Grosso do Sul/UEMS

Programa de Pós-Graduação em Recursos Naturais - PGRN / Centro de Estudos em Recursos Naturais - CERNA

Citas

Awad, O. I., Mamat, R. B., Ali, O. M., & Yusri, I. M. (2016). Effect of fuel oil-gasoline fusel blends on the performance and emission characteristics of spark ignition engine: a review. Journal of Scienctific Research & Development, 3(5), 31-36.

Bansode, S. R., & Rathod, V. K. (2014). Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochemistry, 49(8), 1297-1303.

Bergmann, J. C., Trichez, D., Sallet, L. P., e Silva, F. C. D. P., & Almeida, J. R. (2018). Technological advancements in 1G ethanol production and recovery of by-products based on the biorefinery concept. In Advances in sugarcane biorefinery,73-95. Elsevier.

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature reviews microbiology, 13(1), 42-51.

Borneman, A. R. & Pretorius, I. S. (2015). Genomic Insights into the Saccharomyces sensu stricto Complex. Genetics, 199(2):281–291.

Calam, A., Solmaz, H., Uyumaz, A., Polat, S., Yilmaz, E., & Içingür, Y. (2015). Investigation of usability of the fusel oil in a single cylinder spark ignition engine. Journal of the energy institute, 88(3), 258-265.

Carvalho-Netto, O. V., Carazzolle, M. F., Mofatto, L. S., Teixeira, P. J., Noronha, M. F., Calderón, L. A., ... & Pereira, G. A. (2015). Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microbial cell factories, 14(1), 13.

Chaves, M. C. D. C., & Gomes, C. F. S. (2014). Avaliação de biocombustíveis utilizando o apoio multicritério à decisão. Production, 24(3), 495-507.

Cordente, A. G., Curtin, C. D., Varela, C., & Pretorius, I. S. (2012). Flavour-active wine yeasts. Applied Microbiology and Biotechnology, 96(3), 601-618.

de Carvalho, A. L., Antunes, C. H., & Freire, F. (2016). Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil. Applied energy, 181, 514-526.

de Silva, A. P., Silvello, G. C., Bortoletto, A. M., & Alcarde, A. R. (2020). Composição química de aguardente de cana obtida por diferentes métodos de destilação. Brazilian Journal of Food Technology, 23, 1-10.

Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology and industrial applications of aroma formation in yeast. FEMS microbiology reviews, 41(Supp_1), S95-S128.

Ferreira, M. C. (2012). Estudo do processo de destilação de óleo fúsel.

Ferreira, M. C., Meirelles, A. J., & Batista, E. A. (2013). Study of the fusel oil distillation process. Industrial & engineering chemistry Research, 52(6), 2336-2351.

Freitas, M. D., & Romano, F. P. (2013). Tipos de contaminações bacterianas presentes no processo de fermentação alcoólica. Bioenergia em Revista: Diálogos, 3(2), 29-37.

Gamero, A., Belloch, C., & Querol, A. (2015). Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomycescerevisiae and S. kudriavzevii in winemaking conditions. Microbial cell factories, 14(1), 128.

Hughes, G., & Webber, M. A. (2017). Novel approaches to the treatment of bacterial biofilm infections. British journal of pharmacology, 174(14), 2237-2246.

Magnani, G. S., Didonet, C. M., Cruz, L. M., Picheth, C. F., Pedrosa, F. O., & Souza, E. M. (2010). Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res, 9(1), 250-258.

Masi, M., Réfregiers, M., Pos, K. M., & Pagès, J. M. (2017). Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nature microbiology, 2(3), 1-7.

McGinty, D., Letizia, C. S., & Api, A. M. (2010). Fragrance material review on phytol. Food and Chemical Toxicology, 48, S59-S63.

Moreira, R. F., Netto, C. C., & de Maria, C. A. (2012). A fração volátil das aguardentes de cana produzidas no Brasil. Química Nova, 35(9), 1819-1826.

Mouret, J. R., Camarasa, C., Angenieux, M., Aguera, E., Perez, M., Farines, V., & Sablayrolles, J. M. (2014). Kinetic analysis and gas–liquid balances of the production of fermentative aromas during winemaking fermentations: effect of assimilable nitrogen and temperature. Food research international, 62, 1-10.

Naves, R. F., Fernandes, F. D. S., Pinto, O. G., & Naves, P. L. F. (2010). Contaminação microbiana nas etapas do processamento e sua influência no rendimento fermentativo em usinas alcooleiras. Enciclopédia Biosfera, 6(11), 1-16.

Nedović, V., Gibson, B., Mantzouridou, T., Bugarski, B., Djordjević, V., Kalušević, A., Paraskevopoulou A., Sandell M., Šmogrovičová D. & Yilmaztekin, M. (2015). Aroma formation by immobilized yeast cells in fermentation processes. Yeast, 32(1), 173-216.

Nozzi, N. E., Desai, S. H., Case, A. E., & Atsumi, S. (2014). Metabolic engineering for higher alcohol production. Metabolic engineering, 25, 174-182.

Pereira, L. G., Dias, M. O. S., Junqueira, T. L., Chagas, M. F., Cavalett, O., Maciel Filho, R., & Bonomi, A. (2014). Production of butanol and other high valued chemicals using ethanol as feedstock integrated to a first and second generation sugarcane distillery. Chem. Eng. Trans, 37, 805-810.

Pillai, J. S., Danesh, N., Puttaiah, E. T., & Girish, K. (2011). Microbial diversity in solid waste molasses of Sugar Industry, Aranthangi, Tamilnadu. International Journal of Environmental Sciences, 2(2), 723-730.

Randall, C. P., Mariner, K. R., Chopra, I., & O'Neill, A. J. (2013). The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrobial agents and chemotherapy, 57(1), 637-639.

Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in microbiology, 22(8), 438-445.

Santos, M. D. S. M., Cardoso, C. A. L., & Batistote, M. (2019). Avaliação da ação da luz ultravioleta na linhagem de levedura industrial Ragi Instam utilizada na produção de etanol/Evaluation of the action of ultraviolet light on Ragi Instam industrial yeast strain used in ethanol production. Brazilian Journal of Development, 5(9), 14074-14081.

Santos, M. D. S. M., de Castro, T. L. A., Batistote, M., & Cardoso, C. A. L. (2020). Caracterização do óleo fúsel das usinas da Região da Grande Dourados. In: apresentado em VII Simpósio de Bioquímica e Biotecnologia.

Şimşek, S., Özdalyan, B., & Saygın, H. (2019). Improvement of the Properties of Sugar Factory Fusel Oil Waste and Investigation of its Effect on the Performance and Emissions of Spark Ignition Engine. BioResources, 14(1), 440-452.

Stribny, J., Gamero, A., Pérez-Torrado, R., & Querol, A. (2015). Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. International journal of food microbiology, 205, 41-46.

Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. Journal of industrial microbiology & biotechnology, 38(9), 1145.

Zhao, W. H., & Hu, Z. Q. (2013). Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Critical reviews in microbiology, 39(1), 79-101.

Publicado

27/07/2020

Cómo citar

MASCARENHAS SANTOS, M. do S.; CASTRO, T. L. A. de; BATISTOTE, M.; CARDOSO, C. A. L. Evaluación de la composición química y el potencial de inhibición del aceite de fusel contra diferentes microorganismos. Research, Society and Development, [S. l.], v. 9, n. 8, p. e733986250, 2020. DOI: 10.33448/rsd-v9i8.6250. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6250. Acesso em: 5 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas