Potencial bioactivo de nanopartículas de subproducto de acerola (Malpighia sp. L): Bioaccesibilidad en néctar

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i9.6691

Palabras clave:

Aplicación; Compuestos bioactivos ; Encapsulamiento; Frutas.

Resumen

El procesamiento industrial de la acerola genera una gran cantidad de residuos que generalmente se descartan, causando pérdidas económicas y ambientales. Los estudios muestran que los residuos de frutas son una rica fuente de compuestos bioactivos, lo que llama la atención sobre nuevos estudios para permitir la aplicación en productos alimenticios. En este estudio, se analizaron β-caroteno, antocianinas, flavonoides amarillos, vitamina C, polifenoles extraíbles totales y actividad antioxidante mediante el método ABTS●+ en la pulpa y subproducto de acerola liofilizado. Por lo tanto, el extracto del subproducto de acerola se sometió al proceso de encapsulación por pulverización, usando goma arábiga y maltodextrina como material de pared. La estabilidad de la vitamina C, los compuestos fenólicos y la actividad antioxidante se monitoreó mediante el método ABTS●+ presente en la nanopartícula y la actividad antimicrobiana contra los microorganismos E. coli y L. monocytogenes. Finalmente, la nanopartícula se aplicó al néctar y se verificó la biacesibilidad de los compuestos fenólicos y la capacidad antioxidante. Los resultados mostraron que la pulpa y el subproducto de la acerola mostraron resultados relevantes para los polifenoles (1,214.54 mg GAE/100g y 9,802.97 mg GAE/100g, respectivamente) y vitamina C (1,113.10 mg / 100g y 6.039 mg/100g, en ese orden). Los compuestos bioactivos y la actividad antioxidante se mantuvieron en el extracto encapsulado, así como la nanopartícula mostró actividad bactericida para E. coli. Los resultados demuestran la calidad del residuo de acerola agroindustrial en forma de nanopartículas como fuente de compuestos bioactivos.

Biografía del autor/a

Alessandra Pinheiro de Góes Carneiro, Universidade Federal do Ceará

Instituto de Cultura e Arte - ICA

Antonia Livânia Linhares de Aguiar, Universidade Federal do Ceará

Departamento de Engenharia de Alimentos

Ana Cristina Silva de Lima, Universidade Federal do Ceará

Departamento de Engenharia de Alimentos

Larissa Moraes Ribeiro da Silva, Universidade Federal do Ceará

Departamento de Engenharia de Alimentos

Paulo Henrique Machado de Sousa, Universidade Federal do Ceará

Instituto de Cultura e Arte - ICA

Raimundo Wilane de Figueiredo, Universidade Federal do Ceará

Departamento de Engenharia de Alimentos

Citas

Araújo, A. P. O., Santos, E. C. C., Damasceno, F. S., Deboni, T. M., Cuevas, M. S., & Mota, R. V. (2016). Utilização de planejamento experimental no estudo da pasteurização do suco de acerola. Scientia Plena. 12, 1-8.

Belwal, T., Devkota, H. P., Hassan, H. A., Ahluwalia, S., Ramadan, M. F., Mocan, A., & Atanasov, A. G. (2018). Phytopharmacology of acerola (Malpighia spp.) and Its potencial as functional food. Trends in Food Science & Technology. 74, 99-106.

Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria mmonocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science. 75, 557-563.

Branen, J. K., & Davidson, P. M. (2004). Enhancementofnisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology. 90, 63-74.

Brasil, Instrução Normativa nº 12, de 4 de setembro de 2003. (2003). Regulamento técnico geral para fixação dos Padrões de Identidade e Qualidade para néctar. Diário Oficial da União, Brasília, DF.

Briones-Labarca, V., Venegas-Cubillos, G., Ortiz-Portilla, S., Chacana-Ojeda, M., Maureira, H. (2011). Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chemistry. 128, 520-529.

Çam, M., Içyer, N. C., & Erdogan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional foods development. LWT - Food -Science and Technology. 55, 117-123.

Cheong, A. A. M., Tan, B. C. P., & Nyam, A. K. L. (2017). Physicochemical, oxidative and antioxidante stabilities of kenaf seedoil-in-water nanoemulsions under different storage

temperatures. Industrial Crops and Products. 95, 374-382.

Cruz, R. G., Beney, L., Gervais, P., Lira, S. P., Vieira, T. M. F. S., & Dupont, S. (2019). Comparison of the antioxidante property of acerola extracts with synthetic antioxidants using na in vivo method with yeasts. Food Chemistry. 277, 698-705.

Francis, F. J. (1982). Analysis of anthocyanins in foods. In: Markakis, P. Anthocyanins as Food Colors. New York, Academic Press, 181-207.

Filho, E. G. A., Silva, L. M. A., Brito, E. S., Wurlitzer, N. J., Fernandes, F. A. N., Rabelo, M. C., Fonteles, T. V., & Rodrigues, S. (2018). Evalution of termal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC-MS coupled to chemometrics. Food Chemistry. 265, 23-31.

González, E., Gómez-Caravaca, A. M., Giménez, B., Cebrián, R., Maqueda, M., Martínez-Férez, A., Segura-Carretero, A., & Robert, P. (2019). Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vivo gastrointestinal digestion. Food Chemistry. 279, 40-48.

Guevara, M., Tejera, E., Granda-Albuja, M., Iturralde, G., Chisaguano-Tonato, M., Granda-Albuja, S., Jaramillo-Vivanco, J., Giampieri, F., Battino, M., & Alvarez-Suarez, J. M. (2019). Chemical Composition and Antioxidant Activity of the Main Fruits Consumed in the Western Coastal Region of Ecuador as a Source of Health-Promoting Compounds. Antioxidants. 14, 1-8.

Herculano, E. D., Paula, H. C. B., Figueiredo, E. A. T., Dias, F. G. B., & Pereira, V. A. (2015). Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT - Food Science and Technology. 61: 484-491.

IAL. (2008). Métodos Físico-químicos Para Análise de Alimentos. (4th ed.), Instituto Adolfo Lutz, São Paulo, Brasil.

Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survinal of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Science and Technology. 57, 761-766.

Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated pytochemicals: A review. Food Research International. 107, 227-247.

Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. Journal Agriculture and Food Chemistry. 45, 1390-1393.

Leão, D. P., Franca, A. S., Oliveira, L. S., Bastos, R., & Coimbra, M. A. (2017). Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-product. Food Chemistry. 225, 146-153.

Lima, A. C. S., Soares, D. J., Silva, L. M. R., Figueiredo, R. W., Sousa, P. H. M., & Meneses, E. A. (2014). In vitro bioaccessibility of copper, iron, zinc and antioxidant compounds of whole cashew apple juice and cashew apple fibre (Anacardium occidentale L.) following simulated gastro-intestinal digestion. Food Chemistry. 161, 142–147.

Londoño, M. B. Z., Chaparro, D., Rojano, B. A., Arbelaez, A. F. A., Betancur, L. F. R., & Celis, M. E.M. (2017). Effect of storage time on physicochemical, sensorial, and antioxidante characteristics, and composition of mango (cv. Azúcar) juice. Emirates Journal of Food and Agriculture. 29, 367-377.

Mar, J. M., Silva, L. S., Lira, A. C., Kinupp, V. F., Yoshida, M. I., Moreira, W. P., Bruginski, E., Campos, F. R., Machado, B. M., Souza, T. P., Campelo, P. H., Bezerra, J. A., & Sanches, E. A. (2020). Bioactive compounds-rich powders: Influence of different carriers and drying techniques on the chemical stability of the Hibiscus acetosella extract. Powder tecnnology. 3607 383-391.

Mariano-Nasser, F. A.7 Nasser, M. D.7 Furlaneto, K. A.7 Ramos, J. A.7 Vieites, M. K. P. (2017). Bioactive compounds in different acerola fruit cultivares. Semina: Ciências Agrárias. 387 2505-2514.

Mazza, P. H. S.7 Jaeger, S. M. P. L.7 Silva, F. L.7 Barbosa, A. M.7 Nascimento, T. V. C.7 Hora, D. I. C.7 Da Silva Júnior, J. M.7 Bezerra, L. R., & Oliveira, R. L. (2020). Effect of dehydrated residue from acerola (Malpighia emarginata DC.) fruit polp in lamb diet on intake, ingestive behavior, digestibility ruminal parameters and N balance. Livestock Science. 233, 103938.

Mezadri, T., Villaño, D., Fernández-Pachón, M. S., García-Parrilla, M. C., & Troncoso, A. M. (2008). Antioxidantes compounds and antioxidante activity in acerola (Malpighia emarginata DC.) fruits and derivates. Journal of Food Composition and Analysis. 21, 282-290.

Milani, L. P. G., Garcia, N. O. S., Morais, M. C., Dias, A. L. S., Oliveira, N. L., & Conceição, E. C. (2018). Extract from byproduct Psidium quajava standardized in ellagic acid: additivation of the in vitrophotoprotective efficacy pf a comestic formulation. Revista Brasileira de Farmacognosia. 28, 692-696.

Miller, D. D., Schricker, B. R., Rasmussen, R. R., & Van Campen, D. (1981). In vitromethod for estimation of iron availability from meals. The American Journal of Clinical Nutrition. 34, 2248-2256.

Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon. Shokuhin Kogyo Gakkaisk. 39, 925-928.

Niu, F., Pan, W., Su, Y., & Yang, Y. 2016. Physical and antimicrobial properties of thyme oil

emulsions stabilized by ovalbumin and gum arabic. Food Chemistry. 212, 138-145.

Prakash, B., Kumar, A., Singh, P. P., & Songachan, L. S. (2020). Antimicrobial and antioxidant properties of phycochemicals: current status and future perspective. Functional and Preservative Properties of Phytochemicals. 1-45.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS●+ radical cation decolorization assay. Free Radical Biology and Medicine. 26, 1231-1237.

Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2017). Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT - Food Science and Technology. 85, 158-169.

Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2018). Microencapsulation of extracts of biactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry. 254, 281-291.

Rodriguez-Amaya, D. B., Rodriguez, E. B., & Amaya-Farfan, J. (2006). Advances in food carotenoid research: Chemical and technological aspects, implications in humna healh. Malaysian Journal of Nutrition. 12, 101-121.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jimenez, J., & Saura-Calixto, F. D. (2007). Metodologia Científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS●+. Comunicado Técnico, 128. Fortaleza: Embrapa Agroindústria Tropical.

Ruiz-Rico, M., Pérez-Esteve, E., Lerma-García, M. J., Marcos, M. D., Martínez-Máñez, R., & Barat, J. M. (2017). Protection of folic acid through encapsulation in mesoporous sílica particles included in fruit juices. Food Chemistry. 218, 471-478.

Saènz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry. 114, 616-622.

Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry. 143, 398-404.

Silva, P. B., Mendes, L. G., Rehder, A. P. B., Duarte, C. R., & Barrozo, M. A. S. (2020). Optimization of ultrasound-assisted extraction of bioactive compounds from acerola waste. Journal of Food Science and Technology. 1-10.

Souza, K.O., Moura, C. F. H., Brito, E. S., & Miranda, M. R. A. (2014). Antioxidant compounds and total antioxidant activity in fruits of acerola from cv. Flor Branca, Florida Sweet and BRS 366. Revista Brasileira de Fruticultura. 36, 294-304.

Souza, N. C., Nascimento, E. N. O., Oliveira, I. B., Oliveira, H. M. L., Santos, E. G. P., Mata, M. E. R. M., Gelain, D. P., Moreira, J. C.F., Dalmolin, R. J. S., & Pasquali, M. A. B. (2020). Anti-inflammatory and antioxidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysccharide-stimulated RAW 264.7 macrophages. Biomedicine & Pharmacotherapy. 128, 110277.

Tolun, A., Altintas, Z., Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin andgum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology. 239, 23-33.

Xu, M., Shen, C., Zheng, H., Xu, Y., Xue, C., Zhu, B., & Hu, J. (2020). Metabolomic analysis of acerola cherry (Malpighia emarginata) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidante activity. Food Research International. 130, 108915.

Descargas

Publicado

14/08/2020

Cómo citar

CARNEIRO, A. P. de G.; AGUIAR, A. L. L. de; LIMA, A. C. S. de; SILVA, L. M. R. da; SOUSA, P. H. M. de; FIGUEIREDO, R. W. de. Potencial bioactivo de nanopartículas de subproducto de acerola (Malpighia sp. L): Bioaccesibilidad en néctar. Research, Society and Development, [S. l.], v. 9, n. 9, p. e159996691, 2020. DOI: 10.33448/rsd-v9i9.6691. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6691. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas