Perspectivas de las terapias COVID-19: conflictos y consenso
DOI:
https://doi.org/10.33448/rsd-v9i9.7019Palabras clave:
Coronavirus; Drogas; Pandemia.Resumen
La cronología de las infecciones por COVID-19 muestra que los primeros casos se informaron en diciembre de 2019. Varios pacientes ingresaron en hospitales con una enfermedad respiratoria de etiología desconocida en Wuhan, provincia de Hubei, China. Los pacientes tenían síntomas como tos, fiebre persistente, dolor de garganta y neumonía. La situación de infección respiratoria empeoró rápidamente y se extendió muy rápidamente. Poco después, se informó que el agente causal de la enfermedad había sido confirmado como el nuevo Coronavirus (SARS-CoV-2), perteneciente a la subfamilia Orthocoronavirinae, de la familia Coronaviridae, en el orden Nidovirales. El 7 de enero de 2020, la Organización Mundial de la Salud (OMS) denominó a la enfermedad Coronavirus 2019 (COVID-19). Cloroquina (CQ), hidroxicloroquina (HCQ), remdesivir, heparina, plasma convaleciente, corticosteroides, anticoagulantes, lopinavir, ritonavir, ivermectina y nitazoxanida son algunos de los medicamentos en el mercado que se están probando para combatir el COVID-19. El propósito de esta revisión de la literatura es analizar estudios sobre el potencial curativo de estos medicamentos para COVID-19. Algunos investigadores sobre la eficacia de estos medicamentos, la tasa de éxito en enfermedades virales y su potencial de acción a través de diferentes mecanismos. Por lo tanto, dada la investigación analizada en este estudio, fue evidente para la mayoría de los autores que estos medicamentos son tratamientos prometedores para COVID-19, mientras que la vacuna no se fabrica y no está disponible.
Citas
Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., Boxberger, M., Wurtz, N., Rolain, J. M., Colson, P., La Scola, B., & Raoult, D. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbial Pathogenesis, 145(April), 0–3. https://doi.org/10.1016/j.micpath.2020.104228
Bacharier, L. B., Guilbert, T. W., Mauger, D. T., Boehmer, S., Beigelman, A., Fitzpatrick, A. M., Jackson, D. J., Baxi, S. N., Benson, M., Burnham, C. A. D., Cabana, M., Castro, M., Chmiel, J. F., Covar, R., Daines, M., Gaffin, J. M., Gentile, D. A., Holguin, F., Israel, E., … Martinez, F. D. (2015). Early Administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses a randomized clinical trial. JAMA - Journal of the American Medical Association, 314(19), 2034–2044. https://doi.org/10.1001/jama.2015.13896
Bai Y, Yao L, Wei T, Tian F, Jih DY, Chen L, et al. (2020). Presumed asymptomatic carrier transmission of COVID-19. J Am Med Assoc, 1406–1407. https://doi.org/10.1001/jama.2020.2565
Biot, C., Daher, W., Chavain, N., Fandeur, T., Khalife, J., Dive, D., & De Clercq, E. (2006). Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. Journal of Medicinal Chemistry, 49(9), 2845–2849. https://doi.org/10.1021/jm0601856
Borba, M. G. S., Val, F. F. A., Sampaio, V. S., Alexandre, M. A. A., Melo, G. C., Brito, M., Mourão, M. P. G., Brito-Sousa, J. D., Baía-da-Silva, D., Guerra, M. V. F., Hajjar, L. A., Pinto, R. C., Balieiro, A. A. S., Pacheco, A. G. F., Santos, J. D. O., Naveca, F. G., Xavier, M. S., Siqueira, A. M., Schwarzbold, A., … Lacerda, M. V. G. (2020). Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. JAMA Network Open, 3(4.23), e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857
Bosseboeuf, E., Aubry, M., Nhan, T., de Pina, J. J., Rolain, J. M., Raoult, D., & Musso, D. (2018). Azithromycin Inhibits the Replication of Zika Virus. Journal of Antivirals & Antiretrovirals, 10(1), 6–11. https://doi.org/10.4172/1948-5964.1000173
Buonfrate, D., Salas-Coronas, J., Muñoz, J., Maruri, B. T., Rodari, P., Castelli, F., Zammarchi, L., Bianchi, L., Gobbi, F., Cabezas-Fernández, T., Requena-Mendez, A., Godbole, G., Silva, R., Romero, M., Chiodini, P. L., & Bisoffi, Z. (2019). Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): a multicentre, open-label, phase 3, randomised controlled superiority trial. The Lancet Infectious Diseases, 19(11), 1181–1190. https://doi.org/10.1016/S1473-3099(19)30289-0
C.E.Lane, J., Weaver, J., & Kostka, K. et al. (n.d.). Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid widespread use for COVID-19: a multinational, network cohort and self-controlled case series study. https://doi.org/doi.org/10.1101/2020.04.08.20054551
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787
Canga, A. G., Prieto, A. M. S., Diez Liébana, M. J., Martínez, N. F., Sierra Vega, M., & García Vieitez, J. J. (2008). The pharmacokinetics and interactions of ivermectin in humans - A mini-review. AAPS Journal, 10(1), 42–46. https://doi.org/10.1208/s12248-007-9000-9
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. The New England Journal of Medicine, 1–13. https://doi.org/10.1056/NEJMoa2001282
Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y., & WU, J. J. (2020). First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naive and Experienced COVID-19 Patients. MedRxiv, 2020.03.22.20034041. https://doi.org/10.1101/2020.03.22.20034041
Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for COVID-19. The Lancet Infectious Diseases, 20(4), 398–400. https://doi.org/10.1016/S1473-3099(20)30141-9
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Chen, Y., Guo, Y., Pan, Y., & Zhao, Z. J. (2020). Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 525(1), 135–140. https://doi.org/10.1016/j.bbrc.2020.02.071
Cheng, Y., Wong, R., Soo, Y. O. Y., Wong, W. S., Lee, C. K., Ng, M. H. L., Chan, P., Wong, K. C., Leung, C. B., & Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, 24(1), 44–46. https://doi.org/10.1007/s10096-004-1271-9
Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55(4), 105932. https://doi.org/10.1016/j.ijantimicag.2020.105932
Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care. https://doi.org/10.1016/j.jcrc.2020.03.005
Deng, L., Li, C., Zeng, Q., Liu, X., Li, X., Zhang, H., Hong, Z., & Xia, J. (2020). Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. Journal of Infection. https://doi.org/10.1016/j.jinf.2020.03.002
Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
Epidemiology Working Group for NCIP Epidemic Response, C. C. for D. C. and P. (2020). The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi, 41(2), 145–151.
Funck-brentano, C., & Salem, J. (2020). Comment Chloroquine or hydroxychloroquine for COVID-19 : why might they be hazardous ? The Lancet, 6736(20), 1016–1017. https://doi.org/10.1016/S0140-6736(20)31174-0
Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 1–2. https://doi.org/10.5582/BST.2020.01047
Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Dupont, H. T., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
Gritti, G., Raimondi, F., & Ripamonti, D. et al. (2020). Ventilatory, Use of siltuximab in patients with COVID-19 pneumonia requiring Support. MedRxiv, 15 april.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Huijie Bian, Zhao-Hui Zheng, D. W. et al. (2020). Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. MedRxiv. https://doi.org/Huijie Bian, Zhao-Hui Zheng, Ding Wei et al.
Hung, I. F. N., To, K. K. W., Lee, C. K., Lee, K. L., Chan, K., Yan, W. W., Liu, R., Watt, C. L., Chan, W. M., Lai, K. Y., Koo, C. K., Buckley, T., Chow, F. L., Wong, K. K., Chan, H. S., Ching, C. K., Tang, B. S. F., Lau, C. C. Y., Li, I. W. S., … Yuen, K. Y. (2011). Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clinical Infectious Diseases, 52(4), 447–456. https://doi.org/10.1093/cid/ciq106
Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross-species transmission of the newly identified coronavirus 2019-nCoV. Journal of Medical Virology, 92(4), 433–440. https://doi.org/10.1002/jmv.25682
Lai, C. C., Liu, Y. H., Wang, C. Y., Wang, Y. H., Hsueh, S. C., Yen, M. Y., Ko, W. C., & Hsueh, P. R. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 2. https://doi.org/10.1016/j.jmii.2020.02.012
Lee, S. J., Silverman, E., & Bargman, J. M. (2011). The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nature Reviews Nephrology, 7(12), 718–729. https://doi.org/10.1038/nrneph.2011.150
Li, Y., Xie, Z., Lin, W., Cai, W., Wen, C., Guan, Y., Mo, X., Wang, J., Wang, Y., Peng, P., Chen, X., Hong, W., Xiao, G., Liu, J., Zhang, L., Hu, F., Li, F., Li, F., Zhang, F., … Li, L. (2020). An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). MedRxiv, 2020.03.19.20038984. https://doi.org/10.1101/2020.03.19.20038984
Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 6–9. https://doi.org/10.1038/s41421-020-0156-0
Lu, H., Stratton, C. W., & Tang, Y. W. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology, 92(4), 401–402. https://doi.org/10.1002/jmv.25678
Lu, X., Chen, T., Wang, Y., Wang, J., Zhang, B., Li, Y., & Yan, F. (2020). Adjuvant corticosteroid therapy for critically ill patients with COVID-19. MedRxiv, 2020.04.07.20056390. https://doi.org/10.1101/2020.04.07.20056390
Madrid, P. B., Panchal, R. G., Warren, T. K., Shurtleff, A. C., Endsley, A. N., Green, C. E., Kolokoltsov, A., Davey, R., Manger, I. D., Gilfillan, L., Bavari, S., & Tanga, M. J. (2015). Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infectious Diseases, 1(7), 317–326. https://doi.org/10.1021/acsinfecdis.5b00030
Marmor, M. F., Kellner, U., Lai, T. Y. Y., Melles, R. B., Mieler, W. F., & Lum, F. (2016). Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology, 123(6), 1386–1394. https://doi.org/10.1016/j.ophtha.2016.01.058
Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M., & Reggiori, F. (2018). Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 14(8), 1435–1455. https://doi.org/10.1080/15548627.2018.1474314
Million, M., Lagier, J.-C., Gautret, P., Colson, P., Fournier, P.-E., Amrane, S., Hocquart, M., Mailhe, M., Esteves-Vieira, V., Doudier, B., Aubry, C., Correard, F., Giraud-Gatineau, A., Roussel, Y., Berenger, C., Cassir, N., Seng, P., Zandotti, C., Dhiver, C., … Raoult, D. (2020). Full-length title: Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Medicine and Infectious Disease, April, 101738. https://doi.org/10.1016/j.tmaid.2020.101738
Mulangu, S., Dodd, L. E., Davey, R. T., Mbaya, O. T., Proschan, M., Mukadi, D., Manzo, M. L., Nzolo, D., Oloma, A. T., Ibanda, A., Ali, R., Coulibaly, S., Levine, A. C., Grais, R., Diaz, J., Clifford Lane, H., Muyembe-Tamfum, J. J., Sivahera, B., Camara, M., … Nordwall, J. (2019). A randomized, controlled trial of Ebola virus disease therapeutics. New England Journal of Medicine, 381(24), 2293–2303. https://doi.org/10.1056/NEJMoa1910993
Mustafa, S., Balkhy, H., & Gabere, M. N. (2018). Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. Journal of Infection and Public Health, 11(1), 9–17. https://doi.org/10.1016/j.jiph.2017.08.009
Nishimoto, N. (2007). Humanized anti-human IL-6 receptor antibody, tocilizumab. Nippon Rinsho. Japanese Journal of Clinical Medicine, 65(7), 1218–1225. https://doi.org/10.1007/978-3-540-73259-4_7
Parhizgar, A. R. (2017). Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iranian Journal of Medical Sciences, 42(2), 115–128.
Patel, Amit and Desai, Sapan. (2020). Ivermectin in COVID-19 Related Critical Illness. SSRN. https://doi.org/dx.doi.org/10.2139/ssrn.3570270.
Retallack, H., Di Lullo, E., Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa, C., Leon, W. R. M., Krencik, R., Ullian, E. M., Spatazza, J., Pollen, A. A., Mandel-Brehm, C., Nowakowski, T. J., Kriegstein, A. R., & De Risi, J. L. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14408–14413. https://doi.org/10.1073/pnas.1618029113
Rossignol, J. F. (2014). Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Research, 110(August), 94–103. https://doi.org/10.1016/j.antiviral.2014.07.014
Rossignol, J. F. (2016). Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health, 9(3), 227–230. https://doi.org/10.1016/j.jiph.2016.04.001
Rossignol, J. F., La Frazia, S., Chiappa, L., Ciucci, A., & Santoro, M. G. (2009). Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. Journal of Biological Chemistry, 284(43), 29798–29808. https://doi.org/10.1074/jbc.M109.029470
Rynes, R. I. (1997). Antimalarial drugs in the treatment of rheumatological diseases. British Journal of Rheumatology, 36(7), 799–805. https://doi.org/10.1093/rheumatology/36.7.799
Sakurai, Y., Kolokoltsov, A. A., Chen, C., Tidwell, M. W., Bauta, W. E., Klugbauer, N., Grimm, C., Wahl-schott, C., Biel, M., & Davey, R. A. (2015). Targets for Disease Treatment. Science, 347(6225), 995–998.
Sanz-Navarro, J., Feal, C., & Dauden, E. (2017). tratamiento de la sarna en humanos con ivermectina oral. Erupciones eccematosas como nuevos efectos adversos no reportados. Actas Dermo-Sifiliograficas, 108(7), 643–649. https://doi.org/10.1016/j.ad.2017.02.011
Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infectious Diseases, 3(11), 722–727. https://doi.org/10.1016/S1473-3099(03)00806-5
Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., & Cassone, A. (2006). New insights into the antiviral effects of chloroquine. Lancet Infectious Diseases, 6(2), 67–69. https://doi.org/10.1016/S1473-3099(06)70361-9
Shen, C., Chen, J., Li, R., Zhang, M., Wang, G., Stegalkina, S., Zhang, L., Chen, J., Cao, J., Bi, X., Anderson, S. F., Alefantis, T., Zhang, M., Cai, X., Yang, K., Zheng, Q., Fang, M., Yu, H., Luo, W., … Xia, N. (2017). A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Science Translational Medicine, 9(412), 1–13. https://doi.org/10.1126/scitranslmed.aam5752
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., Wei, J., Xiao, H., Yang, Y., Qu, J., Qing, L., Chen, L., Xu, Z., Peng, L., Li, Y., … Liu, L. (2020). Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA - Journal of the American Medical Association, 29, 1–8. https://doi.org/10.1001/jama.2020.4783
Shen, C., Zhang, M., Chen, Y., Zhang, L., Wang, G., Chen, J., Chen, S., Li, Z., Wei, F., Chen, J., Yang, K., Guo, S., Wang, Y., Zheng, Q., Yu, H., Luo, W., Zhang, J., Chen, H., Chen, Y., & Xia, N. (2019). An IgM antibody targeting the receptor binding site of influenza B blocks viral infection with great breadth and potency. Theranostics, 9(1), 210–231. https://doi.org/10.7150/thno.28434
Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases, 20(4), 425–434. https://doi.org/10.1016/S1473-3099(20)30086-4
Şimşek Yavuz, S., & Ünal, S. (2020). Antiviral treatment of covid-19. Turkish Journal of Medical Sciences, 50(SI-1), 611–619. https://doi.org/10.3906/sag-2004-145
Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034
Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1). https://doi.org/10.3390/v11010059
Soo YO, Cheng Y, Wong R, et al. (2004). Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect., 10(7), 676–678.
Spiro, H. M. (1986). Chemotherapy of Malaria. Second ed. In Gastroenterology (Vol. 91, Issue 4, p. 1034). https://doi.org/10.1016/0016-5085(86)90724-9
Tang, N., Bai, H., Chen, X., Gong, J., Li, D., & Sun, Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis : JTH. https://doi.org/10.1111/jth.14817
Thachil, J. (2020). The versatile heparin in COVID-19. Journal of Thrombosis and Haemostasis : JTH, 10–15. https://doi.org/10.1111/jth.14821
Touret, F., & de Lamballerie, X. (2020). Of chloroquine and COVID-19. Antiviral Research, 177(February), 104762. https://doi.org/10.1016/j.antiviral.2020.104762
Treatment, P. a F. H. N., Luke, T. C., Kilbane, E. M., Jackson, J. L., & Hoffman, S. L. (2006). Annals of Internal Medicine Review Meta-Analysis : Convalescent Blood Products for Spanish Influenza. Annals of Internal Medicine, 145(8).
Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2, 1–10. https://doi.org/10.1186/1743-422X-2-69
Wang, C., Li, W., Drabek, D., Okba, N. M. A., Haperen, R. Van, Osterhaus, A. D. M. E., Kuppeveld, F. J. M. Van, Haagmans, B. L., Grosveld, F., & Bosch, B. (n.d.). A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 2020, 1–6. https://doi.org/10.1038/s41467-020-16256-y
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, 0(0), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., … Bavari, S. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 531(7594), 381–385. https://doi.org/10.1038/nature17180
White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. The Lancet, 383(9918), 723–735. https://doi.org/10.1016/S0140-6736(13)60024-0
Winzeler, E. A. (2008). Malaria research in the post-genomic era. Nature, 455(7214), 751–756. https://doi.org/10.1038/nature07361
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - Journal of the American Medical Association, 323(13), 1239–1242. https://doi.org/10.1001/jama.2020.2648
Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S., & Lu, L. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research, 2(February). https://doi.org/10.1038/s41422-020-0305-x
Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., Zhou, Y., Zheng, X., Yang, Y., Li, X., Zhang, X., Pan, A., & Wei, H. (2020). Effective Treatment of Severe COVID-19 Patients with Tocilizumab. ChinaXiv, 1–12. https://doi.org/10.1073/pnas.2005615117
Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K. F., Wei, Y., Jin, N., & Jiang, C. (2013). Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Research, 23(2), 300–302. https://doi.org/10.1038/cr.2012.165
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Liu, D., Clinical, D., Liu, D., Tan, W., Liu, D., & Clinical, D. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point : Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clinical Infectious Diseases, 2, 1–25.
Zhang, W., Du, R. H., Li, B., Zheng, X. S., Yang, X. Lou, Hu, B., Wang, Y. Y., Xiao, G. F., Yan, B., Shi, Z. L., & Zhou, P. (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes and Infections, 9(1), 386–389. https://doi.org/10.1080/22221751.2020.1729071
Zhiyong, L., & Liuyan, M. (n.d.). During a short period of time, the outbreak of pneumonia caused by 【 Abstract 】 a novel coronavirus, named Novel Coronavirus Pneumonia (NCP), was first reported in China, spreading to 24 countries and regions rapidly. The number of confirmed. https://doi.org/10.3760/cma.j.issn.1002-0098.2020.04.000
Zhu, Z., Cai, T., Fan, L., Lou, K., Hua, X., Huang, Z., & Gao, G. (2020). Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. International Journal of Infectious Diseases. https://doi.org/10.1016/j.ijid.2020.04.041
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Kaline Romeiro, Régida C.S Batista, Luciana Gominho, Caio V.B. Arruda, Antonio C. Moura, Diana S. Albuquerque, Marleny E. M. M. Gerbi, Marcely Cassimiro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.