Perspectivas das terapias da COVID-19: conflitos e consenso

Autores

DOI:

https://doi.org/10.33448/rsd-v9i9.7019

Palavras-chave:

Coronavírus; Drogas; Pandemia.

Resumo

A cronologia das infecções por COVID-19 mostra que os primeiros casos foram notificados em dezembro de 2019. Vários pacientes foram internados em hospitais com uma doença respiratória de etiologia desconhecida em Wuhan, província de Hubei, China. Os pacientes apresentaram sintomas como tosse, febre persistente, dor de garganta e pneumonia. A situação da infecção respiratória piorou rapidamente e teve uma disseminação muito rápida. Logo após, foi relatado que o agente causador da doença havia sido confirmado como o novo Coronavírus (SARS-CoV-2), pertencente à subfamília Orthocoronavirinae, da família Coronaviridae, na ordem Nidovirales. Em 7 de janeiro de 2020, a doença foi nomeada como Doença de Coronavírus 2019 (COVID-19) pela Organização Mundial da Saúde (OMS). Cloroquina (CQ), Hidroxicloroquina (HCQ), Remdesivir, Heparina, Plasma Convalescente, Corticosteróide, Anticoagulantes, Lopinavir, Ritonavir, Ivermectina e Nitazoxanida são alguns dos medicamentos no mercado que estão sendo testados para combater o COVID-19. O objetivo desta revisão de literatura é analisar estudos sobre o potencial de cura desses medicamentos para o COVID-19. Alguns pesquisadores relatam sobre a eficácia desses medicamentos, a taxa de sucesso em doenças virais e seu potencial de ação por diferentes mecanismos. Assim, dadas as pesquisas analisadas neste estudo, ficou evidente para a maioria dos autores que esses medicamentos são tratamentos promissores para o COVID-19, enquanto a vacina não é fabricada e disponível.

Referências

Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., Boxberger, M., Wurtz, N., Rolain, J. M., Colson, P., La Scola, B., & Raoult, D. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbial Pathogenesis, 145(April), 0–3. https://doi.org/10.1016/j.micpath.2020.104228

Bacharier, L. B., Guilbert, T. W., Mauger, D. T., Boehmer, S., Beigelman, A., Fitzpatrick, A. M., Jackson, D. J., Baxi, S. N., Benson, M., Burnham, C. A. D., Cabana, M., Castro, M., Chmiel, J. F., Covar, R., Daines, M., Gaffin, J. M., Gentile, D. A., Holguin, F., Israel, E., … Martinez, F. D. (2015). Early Administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses a randomized clinical trial. JAMA - Journal of the American Medical Association, 314(19), 2034–2044. https://doi.org/10.1001/jama.2015.13896

Bai Y, Yao L, Wei T, Tian F, Jih DY, Chen L, et al. (2020). Presumed asymptomatic carrier transmission of COVID-19. J Am Med Assoc, 1406–1407. https://doi.org/10.1001/jama.2020.2565

Biot, C., Daher, W., Chavain, N., Fandeur, T., Khalife, J., Dive, D., & De Clercq, E. (2006). Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. Journal of Medicinal Chemistry, 49(9), 2845–2849. https://doi.org/10.1021/jm0601856

Borba, M. G. S., Val, F. F. A., Sampaio, V. S., Alexandre, M. A. A., Melo, G. C., Brito, M., Mourão, M. P. G., Brito-Sousa, J. D., Baía-da-Silva, D., Guerra, M. V. F., Hajjar, L. A., Pinto, R. C., Balieiro, A. A. S., Pacheco, A. G. F., Santos, J. D. O., Naveca, F. G., Xavier, M. S., Siqueira, A. M., Schwarzbold, A., … Lacerda, M. V. G. (2020). Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. JAMA Network Open, 3(4.23), e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857

Bosseboeuf, E., Aubry, M., Nhan, T., de Pina, J. J., Rolain, J. M., Raoult, D., & Musso, D. (2018). Azithromycin Inhibits the Replication of Zika Virus. Journal of Antivirals & Antiretrovirals, 10(1), 6–11. https://doi.org/10.4172/1948-5964.1000173

Buonfrate, D., Salas-Coronas, J., Muñoz, J., Maruri, B. T., Rodari, P., Castelli, F., Zammarchi, L., Bianchi, L., Gobbi, F., Cabezas-Fernández, T., Requena-Mendez, A., Godbole, G., Silva, R., Romero, M., Chiodini, P. L., & Bisoffi, Z. (2019). Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): a multicentre, open-label, phase 3, randomised controlled superiority trial. The Lancet Infectious Diseases, 19(11), 1181–1190. https://doi.org/10.1016/S1473-3099(19)30289-0

C.E.Lane, J., Weaver, J., & Kostka, K. et al. (n.d.). Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid widespread use for COVID-19: a multinational, network cohort and self-controlled case series study. https://doi.org/doi.org/10.1101/2020.04.08.20054551

Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787

Canga, A. G., Prieto, A. M. S., Diez Liébana, M. J., Martínez, N. F., Sierra Vega, M., & García Vieitez, J. J. (2008). The pharmacokinetics and interactions of ivermectin in humans - A mini-review. AAPS Journal, 10(1), 42–46. https://doi.org/10.1208/s12248-007-9000-9

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. The New England Journal of Medicine, 1–13. https://doi.org/10.1056/NEJMoa2001282

Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y., & WU, J. J. (2020). First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naive and Experienced COVID-19 Patients. MedRxiv, 2020.03.22.20034041. https://doi.org/10.1101/2020.03.22.20034041

Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for COVID-19. The Lancet Infectious Diseases, 20(4), 398–400. https://doi.org/10.1016/S1473-3099(20)30141-9

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

Chen, Y., Guo, Y., Pan, Y., & Zhao, Z. J. (2020). Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 525(1), 135–140. https://doi.org/10.1016/j.bbrc.2020.02.071

Cheng, Y., Wong, R., Soo, Y. O. Y., Wong, W. S., Lee, C. K., Ng, M. H. L., Chan, P., Wong, K. C., Leung, C. B., & Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, 24(1), 44–46. https://doi.org/10.1007/s10096-004-1271-9

Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55(4), 105932. https://doi.org/10.1016/j.ijantimicag.2020.105932

Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care. https://doi.org/10.1016/j.jcrc.2020.03.005

Deng, L., Li, C., Zeng, Q., Liu, X., Li, X., Zhang, H., Hong, Z., & Xia, J. (2020). Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. Journal of Infection. https://doi.org/10.1016/j.jinf.2020.03.002

Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938

Epidemiology Working Group for NCIP Epidemic Response, C. C. for D. C. and P. (2020). The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi, 41(2), 145–151.

Funck-brentano, C., & Salem, J. (2020). Comment Chloroquine or hydroxychloroquine for COVID-19 : why might they be hazardous ? The Lancet, 6736(20), 1016–1017. https://doi.org/10.1016/S0140-6736(20)31174-0

Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 1–2. https://doi.org/10.5582/BST.2020.01047

Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Dupont, H. T., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949

Gritti, G., Raimondi, F., & Ripamonti, D. et al. (2020). Ventilatory, Use of siltuximab in patients with COVID-19 pneumonia requiring Support. MedRxiv, 15 april.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Huijie Bian, Zhao-Hui Zheng, D. W. et al. (2020). Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. MedRxiv. https://doi.org/Huijie Bian, Zhao-Hui Zheng, Ding Wei et al.

Hung, I. F. N., To, K. K. W., Lee, C. K., Lee, K. L., Chan, K., Yan, W. W., Liu, R., Watt, C. L., Chan, W. M., Lai, K. Y., Koo, C. K., Buckley, T., Chow, F. L., Wong, K. K., Chan, H. S., Ching, C. K., Tang, B. S. F., Lau, C. C. Y., Li, I. W. S., … Yuen, K. Y. (2011). Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clinical Infectious Diseases, 52(4), 447–456. https://doi.org/10.1093/cid/ciq106

Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross-species transmission of the newly identified coronavirus 2019-nCoV. Journal of Medical Virology, 92(4), 433–440. https://doi.org/10.1002/jmv.25682

Lai, C. C., Liu, Y. H., Wang, C. Y., Wang, Y. H., Hsueh, S. C., Yen, M. Y., Ko, W. C., & Hsueh, P. R. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 2. https://doi.org/10.1016/j.jmii.2020.02.012

Lee, S. J., Silverman, E., & Bargman, J. M. (2011). The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nature Reviews Nephrology, 7(12), 718–729. https://doi.org/10.1038/nrneph.2011.150

Li, Y., Xie, Z., Lin, W., Cai, W., Wen, C., Guan, Y., Mo, X., Wang, J., Wang, Y., Peng, P., Chen, X., Hong, W., Xiao, G., Liu, J., Zhang, L., Hu, F., Li, F., Li, F., Zhang, F., … Li, L. (2020). An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). MedRxiv, 2020.03.19.20038984. https://doi.org/10.1101/2020.03.19.20038984

Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 6–9. https://doi.org/10.1038/s41421-020-0156-0

Lu, H., Stratton, C. W., & Tang, Y. W. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology, 92(4), 401–402. https://doi.org/10.1002/jmv.25678

Lu, X., Chen, T., Wang, Y., Wang, J., Zhang, B., Li, Y., & Yan, F. (2020). Adjuvant corticosteroid therapy for critically ill patients with COVID-19. MedRxiv, 2020.04.07.20056390. https://doi.org/10.1101/2020.04.07.20056390

Madrid, P. B., Panchal, R. G., Warren, T. K., Shurtleff, A. C., Endsley, A. N., Green, C. E., Kolokoltsov, A., Davey, R., Manger, I. D., Gilfillan, L., Bavari, S., & Tanga, M. J. (2015). Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infectious Diseases, 1(7), 317–326. https://doi.org/10.1021/acsinfecdis.5b00030

Marmor, M. F., Kellner, U., Lai, T. Y. Y., Melles, R. B., Mieler, W. F., & Lum, F. (2016). Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology, 123(6), 1386–1394. https://doi.org/10.1016/j.ophtha.2016.01.058

Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M., & Reggiori, F. (2018). Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 14(8), 1435–1455. https://doi.org/10.1080/15548627.2018.1474314

Million, M., Lagier, J.-C., Gautret, P., Colson, P., Fournier, P.-E., Amrane, S., Hocquart, M., Mailhe, M., Esteves-Vieira, V., Doudier, B., Aubry, C., Correard, F., Giraud-Gatineau, A., Roussel, Y., Berenger, C., Cassir, N., Seng, P., Zandotti, C., Dhiver, C., … Raoult, D. (2020). Full-length title: Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Medicine and Infectious Disease, April, 101738. https://doi.org/10.1016/j.tmaid.2020.101738

Mulangu, S., Dodd, L. E., Davey, R. T., Mbaya, O. T., Proschan, M., Mukadi, D., Manzo, M. L., Nzolo, D., Oloma, A. T., Ibanda, A., Ali, R., Coulibaly, S., Levine, A. C., Grais, R., Diaz, J., Clifford Lane, H., Muyembe-Tamfum, J. J., Sivahera, B., Camara, M., … Nordwall, J. (2019). A randomized, controlled trial of Ebola virus disease therapeutics. New England Journal of Medicine, 381(24), 2293–2303. https://doi.org/10.1056/NEJMoa1910993

Mustafa, S., Balkhy, H., & Gabere, M. N. (2018). Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. Journal of Infection and Public Health, 11(1), 9–17. https://doi.org/10.1016/j.jiph.2017.08.009

Nishimoto, N. (2007). Humanized anti-human IL-6 receptor antibody, tocilizumab. Nippon Rinsho. Japanese Journal of Clinical Medicine, 65(7), 1218–1225. https://doi.org/10.1007/978-3-540-73259-4_7

Parhizgar, A. R. (2017). Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iranian Journal of Medical Sciences, 42(2), 115–128.

Patel, Amit and Desai, Sapan. (2020). Ivermectin in COVID-19 Related Critical Illness. SSRN. https://doi.org/dx.doi.org/10.2139/ssrn.3570270.

Retallack, H., Di Lullo, E., Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa, C., Leon, W. R. M., Krencik, R., Ullian, E. M., Spatazza, J., Pollen, A. A., Mandel-Brehm, C., Nowakowski, T. J., Kriegstein, A. R., & De Risi, J. L. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 14408–14413. https://doi.org/10.1073/pnas.1618029113

Rossignol, J. F. (2014). Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Research, 110(August), 94–103. https://doi.org/10.1016/j.antiviral.2014.07.014

Rossignol, J. F. (2016). Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health, 9(3), 227–230. https://doi.org/10.1016/j.jiph.2016.04.001

Rossignol, J. F., La Frazia, S., Chiappa, L., Ciucci, A., & Santoro, M. G. (2009). Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. Journal of Biological Chemistry, 284(43), 29798–29808. https://doi.org/10.1074/jbc.M109.029470

Rynes, R. I. (1997). Antimalarial drugs in the treatment of rheumatological diseases. British Journal of Rheumatology, 36(7), 799–805. https://doi.org/10.1093/rheumatology/36.7.799

Sakurai, Y., Kolokoltsov, A. A., Chen, C., Tidwell, M. W., Bauta, W. E., Klugbauer, N., Grimm, C., Wahl-schott, C., Biel, M., & Davey, R. A. (2015). Targets for Disease Treatment. Science, 347(6225), 995–998.

Sanz-Navarro, J., Feal, C., & Dauden, E. (2017). tratamiento de la sarna en humanos con ivermectina oral. Erupciones eccematosas como nuevos efectos adversos no reportados. Actas Dermo-Sifiliograficas, 108(7), 643–649. https://doi.org/10.1016/j.ad.2017.02.011

Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infectious Diseases, 3(11), 722–727. https://doi.org/10.1016/S1473-3099(03)00806-5

Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., & Cassone, A. (2006). New insights into the antiviral effects of chloroquine. Lancet Infectious Diseases, 6(2), 67–69. https://doi.org/10.1016/S1473-3099(06)70361-9

Shen, C., Chen, J., Li, R., Zhang, M., Wang, G., Stegalkina, S., Zhang, L., Chen, J., Cao, J., Bi, X., Anderson, S. F., Alefantis, T., Zhang, M., Cai, X., Yang, K., Zheng, Q., Fang, M., Yu, H., Luo, W., … Xia, N. (2017). A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Science Translational Medicine, 9(412), 1–13. https://doi.org/10.1126/scitranslmed.aam5752

Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., Wei, J., Xiao, H., Yang, Y., Qu, J., Qing, L., Chen, L., Xu, Z., Peng, L., Li, Y., … Liu, L. (2020). Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA - Journal of the American Medical Association, 29, 1–8. https://doi.org/10.1001/jama.2020.4783

Shen, C., Zhang, M., Chen, Y., Zhang, L., Wang, G., Chen, J., Chen, S., Li, Z., Wei, F., Chen, J., Yang, K., Guo, S., Wang, Y., Zheng, Q., Yu, H., Luo, W., Zhang, J., Chen, H., Chen, Y., & Xia, N. (2019). An IgM antibody targeting the receptor binding site of influenza B blocks viral infection with great breadth and potency. Theranostics, 9(1), 210–231. https://doi.org/10.7150/thno.28434

Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases, 20(4), 425–434. https://doi.org/10.1016/S1473-3099(20)30086-4

Şimşek Yavuz, S., & Ünal, S. (2020). Antiviral treatment of covid-19. Turkish Journal of Medical Sciences, 50(SI-1), 611–619. https://doi.org/10.3906/sag-2004-145

Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034

Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1). https://doi.org/10.3390/v11010059

Soo YO, Cheng Y, Wong R, et al. (2004). Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect., 10(7), 676–678.

Spiro, H. M. (1986). Chemotherapy of Malaria. Second ed. In Gastroenterology (Vol. 91, Issue 4, p. 1034). https://doi.org/10.1016/0016-5085(86)90724-9

Tang, N., Bai, H., Chen, X., Gong, J., Li, D., & Sun, Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis : JTH. https://doi.org/10.1111/jth.14817

Thachil, J. (2020). The versatile heparin in COVID-19. Journal of Thrombosis and Haemostasis : JTH, 10–15. https://doi.org/10.1111/jth.14821

Touret, F., & de Lamballerie, X. (2020). Of chloroquine and COVID-19. Antiviral Research, 177(February), 104762. https://doi.org/10.1016/j.antiviral.2020.104762

Treatment, P. a F. H. N., Luke, T. C., Kilbane, E. M., Jackson, J. L., & Hoffman, S. L. (2006). Annals of Internal Medicine Review Meta-Analysis : Convalescent Blood Products for Spanish Influenza. Annals of Internal Medicine, 145(8).

Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2, 1–10. https://doi.org/10.1186/1743-422X-2-69

Wang, C., Li, W., Drabek, D., Okba, N. M. A., Haperen, R. Van, Osterhaus, A. D. M. E., Kuppeveld, F. J. M. Van, Haagmans, B. L., Grosveld, F., & Bosch, B. (n.d.). A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 2020, 1–6. https://doi.org/10.1038/s41467-020-16256-y

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0

Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, 0(0), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9

Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., … Bavari, S. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 531(7594), 381–385. https://doi.org/10.1038/nature17180

White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. The Lancet, 383(9918), 723–735. https://doi.org/10.1016/S0140-6736(13)60024-0

Winzeler, E. A. (2008). Malaria research in the post-genomic era. Nature, 455(7214), 751–756. https://doi.org/10.1038/nature07361

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - Journal of the American Medical Association, 323(13), 1239–1242. https://doi.org/10.1001/jama.2020.2648

Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S., & Lu, L. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research, 2(February). https://doi.org/10.1038/s41422-020-0305-x

Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., Zhou, Y., Zheng, X., Yang, Y., Li, X., Zhang, X., Pan, A., & Wei, H. (2020). Effective Treatment of Severe COVID-19 Patients with Tocilizumab. ChinaXiv, 1–12. https://doi.org/10.1073/pnas.2005615117

Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K. F., Wei, Y., Jin, N., & Jiang, C. (2013). Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Research, 23(2), 300–302. https://doi.org/10.1038/cr.2012.165

Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Liu, D., Clinical, D., Liu, D., Tan, W., Liu, D., & Clinical, D. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point : Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clinical Infectious Diseases, 2, 1–25.

Zhang, W., Du, R. H., Li, B., Zheng, X. S., Yang, X. Lou, Hu, B., Wang, Y. Y., Xiao, G. F., Yan, B., Shi, Z. L., & Zhou, P. (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes and Infections, 9(1), 386–389. https://doi.org/10.1080/22221751.2020.1729071

Zhiyong, L., & Liuyan, M. (n.d.). During a short period of time, the outbreak of pneumonia caused by 【 Abstract 】 a novel coronavirus, named Novel Coronavirus Pneumonia (NCP), was first reported in China, spreading to 24 countries and regions rapidly. The number of confirmed. https://doi.org/10.3760/cma.j.issn.1002-0098.2020.04.000

Zhu, Z., Cai, T., Fan, L., Lou, K., Hua, X., Huang, Z., & Gao, G. (2020). Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. International Journal of Infectious Diseases. https://doi.org/10.1016/j.ijid.2020.04.041

Downloads

Publicado

13/08/2020

Como Citar

ROMEIRO, K.; BATISTA, R. C. da S.; GOMINHO, L.; ARRUDA, C. V. B. de; MOURA, A. C.; ALBUQUERQUE, D. S. de; GERBI, M. E. M. de M.; CASSIMIRO, M. Perspectivas das terapias da COVID-19: conflitos e consenso. Research, Society and Development, [S. l.], v. 9, n. 9, p. e85997019, 2020. DOI: 10.33448/rsd-v9i9.7019. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7019. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde