Películas y recubrimientos comestibles naturales aplicados en alimentos: una revisión bibliográfica
DOI:
https://doi.org/10.33448/rsd-v9i9.7613Palabras clave:
Biodegradables; Alimento; Aditivo natural; Polímeros.Resumen
Hoy en día, la producción mundial de plástico genera muchos residuos. Por lo tanto, hay necesidades de reducir los materiales plásticos convencionales no biodegradables, fue incentivado el desenvolvimiento de materiales biodegradables innovadores a partir de recursos renovables. As películas de polímeros de base biológica puede ser desenvuelto usando fuentes naturales como polisacáridos, proteínas, lípidos y sus combinaciones. Polímeros naturales comestibles son los materiales hechos de constituyentes naturales comestibles que pueden ser consumidos por animales o por seres humanos sin riesgo para la salud. Además de eso existen aditivos que también pueden ser utilizados para mejorar las características del embalaje, como aceites esenciales, antioxidantes. Este artículo de revisión tiene como objetivo realizar una extensa revisión de la literatura y comparar los datos encontrados por varios autores en relación a los distintos polímeros naturales utilizados en la fabricación de recubrimientos y películas comestibles aplicados a productos alimenticios, y así demostrar que su uso puede mejorar su características y prolongar la vida útil. Se utilizaron más de 130 referencias bibliográficas para producir este artículo de revisión y se utilizaron varias plataformas de investigación (Scielo, google scholar, entre otras). Tras la extensa revisión de la literatura, es posible concluir que el uso de polímeros obtenidos de fuentes naturales es eficaz para conservar los alimentos por más tiempo y así provocar una reducción en la pérdida de vida útil de estos productos.
Citas
Adjouman, D., Nindjin, C., Tetchi, F., Dalcq, A., & Amani, N. (2017). Water vapor permeability of edible films based on improved Cassava (Manihot esculenta Crantz) native starches. Journal of Food Processing & Technology, 8(2), 1–6. DOI: 10.4172/2157-7110.1000665
Anglès, M. N., Salvadö, J., & Dufresne, A. (1999). Steam-exploded residual softwood-filled polypropylene composite. Journal of Applied Polymer Science, 74(8), 1962-1977. https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8<1962::AID-APP10>3.0.CO;2-X
Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(4), 839–848. https://doi.org/10.1016/j.carbpol.2010.03.051
Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A., & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309, 125566. https://doi.org/10.1016/j.foodchem.2019.125566
Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51–62. https://doi.org/10.1016/j.tifs.2015.12.001
Azeredo, H. M. C., & Waldron, K. W. (2016). Crosslinking in polysaccharide and protein films and coatings for food contact - A review. Trends in Food Science and Technology, 52, 109–122. https://doi.org/10.1016/j.tifs.2016.04.008
Baldwin, E. A., Hagenmaier, R. D., & Bai, J. (2012). Edible coatings and films to improve food quality. In Edible Coatings and Films to Improve Food Quality, Second Edition (Second edi). Boca Raton, FL.
Baranzelli, J., Kringel, D. H., Mallmann, J. F., Bock, E., El Halal, S. L. M., Prietto, L., & Dias, A. R. G. (2019). Impact of Wheat (Triticum aestivum L.) Germination Process on Starch Properties for Application in Films. Starch - Stärke, 71(7–8), 1800262. https://doi.org/10.1002/star.201800262
Bhat, R., & Karim, A. A. (2014). Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents. Journal of Food Science and Technology, 51(7), 1326–1333. Doi: 10.1007/s13197-012-0652-9
Bhuimbar, M. V, Bhagwat, P. K., & Dandge, P. B. (2019). Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film. Journal of Environmental Chemical Engineering, 7(2), 102983. https://doi.org/10.1016/j.jece.2019.102983
Bordes, P., Pollet, E., & Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125–155. https://doi.org/10.1016/j.progpolymsci.2008.10.002
Borges, J. A., Romani, V. P., Cortez-Vega, W. R., & Martins, V. G. (2015). Influence of different starch sources and plasticizers on properties of biodegradable films. International Food Research Journal, 22(6), 2346–2351.
Chakravartula, C. C., Balestra, F., Fabbri, A., & Dalla Rosa, M. (2019). Evaluation of the effect of edible coating on mini-buns during storage by using NIR spectroscopy. Journal of Food Engineering, 263, 46-52. https://doi.org/10.1016/j.jfoodeng.2019.05.035
Chambi, H. N. M., Da Costa, B. S., De Lima, W. C., Kassardjian, D. C., & Schmidt, F. L. (2020). Fruit juices in polysaccharides edible films. African Journal of Food Science, 14(3), 53–62. DOI: 10.5897/AJFS2020.1916
Chauhan, O. P., Nanjappa, C., Ashok, N., Ravi, N., Roopa, N., & Raju, P. S. (2015). Shellac and Aloe vera gel based surface coating for shelf life extension of tomatoes. Journal of Food Science and Technology, 52(2), 1200–1205. Doi: 10.1007/s13197-013-1035-6
Chen, G. (2005). Polyhydroxyalkanoates. In R. Smith (Ed.), Biodegradable Polymers for Industrial Applications (pp. 32–56).
Chevalier, E., Chaabani, A., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate - A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life, 16, 41–50. https://doi.org/10.1016/j.fpsl.2018.01.005
Chevalier, R. C., Pizato, S., De Lara, J. A. F., & Cortez-Vega, W. R. (2018). Obtaining protein isolate of tilapia (Oreochromis niloticus) and its application as coating in fresh-cut melons. Journal of Food Safety, 38(5), e12496. https://doi.org/10.1111/jfs.12496
Chevalier, R. C., Da Silva, G. F. A., Da Silva, D. M., Pizato, S., & Cortez-Vega, W. R. (2016). Utilização de revestimento comestível à base de quitosana para aumentar a vida útil de melão minimamente processado. Journal of Bioenergy and Food Science, 3(3), 130–138. DOI 10.18067/jbfs.v3i3.101
Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159–168. https://doi.org/10.1016/j.jfoodeng.2008.02.002
Chiralt, A., González-Martínez, C., Vargas, M., & Atarés, L. (2018). Edible films and coatings from proteins. In Proteins in Food Processing (pp. 477–500).
Chitravathi, K., Chauhan, O. P., & Raju, P. S. (2014). Postharvest biology and technology postharvest shelf life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings. Postharvest Biology and Technology, 92, 146–148. DOI:10.1016/j.postharvbio.2014.01.021
Chiumarelli, M., & Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20–27. https://doi.org/10.1016/j.foodhyd.2013.11.013
Chu, P. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5–6), 143–206. https://doi.org/10.1016/S0927-796X(02)00004-9
Colla, E., Sobral, P. J. S., & Menegalli, F. C. (2006). Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties. Journal of Agricultural and Food Chemistry, 54(18), 6645–6653. Doi: 10.1021/jf0611217
Cordeiro de Azeredo, H. M. (2012). Edible coatings. In Rodrigues, S., & Fernandes, F. A. N., (Eds.), Advances in Fruit Processing Technologies.
Corrales, M., Fernández, A., & Han, J. H. (2014). Antimicrobial packaging systems. (Second E. Han (Ed.), Innovations in Food Packaging (pp. 133–170).
Cortez-Vega, W. R., Piotrowicz, I. B. B., Prentice, C., Borges, C. D. (2013). Conservação de mamão minimamente processado com uso de revestimento comestível à base de goma xantana. Semina: Ciências Agrárias, 34(4), 1753-1764. DOI:10.5433/1679-0359.2013v34n4p1753
Cortez-Vega, W. R., Pizato, S., De Souza, J. T. A., & Prentice, C. (2014). Using edible coatings from Whitemouth croaker (Micropogonias furnieri) protein isolate and organo-clay nanocomposite for improve the conservation properties of fresh-cut ‘Formosa’ papaya. Innovative Food Science and Emerging Technologies, 22, 197–202. https://doi.org/10.1016/j.ifset.2013.12.007
Da Rocha, M., Prietto, L., De Souza, M. M., Furlong, E. B., & Prentice, C. (2018). Effect of organic acids on physical-mechanical and antifungicidal properties of anchovy protein films. Journal of Aquatic Food Product Technology, 27(3), 316–326. https://doi.org/10.1080/10498850.2018.1433736
Dai, L., Zhang, J., & Cheng, F. (2020). Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chemistry, 311, 125891. https://doi.org/10.1016/j.foodchem.2019.125891
De Geyter, N., & Morent, R. (2012). Non-thermal plasma surface modification of biodegradable polymers. In R. M. E.-D. N. Ghista (Ed.), Biomedical Science, Engineering and Technology (pp. 225–246). IntechOpen, London, UK.
De Morais Lima, M., Bianchini, D., Guerra Dias, A. R. G., Da Rosa Zavareze, E., Prentice, C., & Silveira Moreira, A. (2017). Biodegradable films based on chitosan, xanthan gum, and fish protein hydrolysate. Journal of Applied Polymer Science, 134(23), 44899. https://doi.org/10.1002/app.44899
De Morais Lima, M., Carneiro, L. C., Bianchini, D., Dias, A. R. G., Zavareze, E. R., Prentice, C., & Moreira, A. S. (2017). Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. Journal of Food Science, 82(3), 698–705. Doi: 10.1111/1750-3841.13653
De Pilli, T. (2020). Development of a vegetable oil and egg proteins edible film to replace preservatives and primary packaging of sweet baked goods. Food Control, 114, 107273. https://doi.org/10.1016/j.foodcont.2020.107273
De Souza Silva, R., Santos, B. M. M., Fonseca, G. G., Prentice, C., & Cortez-Vega, W. R. (2020). Analysis of Hybrid sorubim protein films incorporated with glycerol and clove essential oil for packaging applications. Journal of Polymers and the Environment, 28(2), 421–432. DOI:10.1007/s10924-019-01608-7
Duran, A., & Kahve, H. I. (2016). The use of chitosan as a coating material. Academic Journal of Science, 05, 167– 172. https://doi.org/10.1155/2016/4851730
El Halal, S. L. M., Bruni, G. P., Do Evangelho, J. A., Biduski, B., Silva, F. T., Dias, A. R. G., & Luvielmo, M. M. (2018). The properties of potato and cassava starch films combined with cellulose fibers and/or nanoclay. Starch, 70(1–2), 1700115. https://doi.org/10.1002/star.201700115
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010
Emamifar, A., Ghaderi, Z., & Ghaderi, N. (2019). Effect of salep-based edible coating enriched with grape seed extract on postharvest shelf life of fresh strawberries. Journal of Food Safety, 39(6), e12710. https://doi.org/10.1111/jfs.12710
Enujiugha, V. N., & Oyinloye, A. M. (2019). Protein-lipid interactions and the formation of edible films and coatings. Encyclopedia of Food Chemistry, 2(3):478-482. DOI:10.1002/1521-3803(20000501)44:3<148::AID-FOOD148>3.0.CO;2-P
Erkmen, O., & Barazi, A. O. (2018). General characteristics of edible films. Journal of Food Biotechnology Research, 2(1-3), 1–4.
Erkmen, O., & Bozoglu, T. F. (2016). Food microbiology: principles into practice. In O. Erkmen & T. F. Bozoglu (Eds.), Food Microbiology: Principles into Practice. John Wiley & Sons, Hoboken, Nova Jersey.
Etxabide, A., Uranga, J., Guerrero, P., & De La Caba, K. (2017). Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids, 68, 192–198. https://doi.org/10.1016/j.foodhyd.2016.08.021
Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. https://doi.org/10.1016/j.tifs.2011.02.004
Feng, Z., Li, L., Wang, Q., Wu, G., Liu, C., Jiang, B., Xu, J. (2019). Effect of antioxidant and antimicrobial coating based on whey protein nanofibrils with TiO2 nanotubes on the quality and shelf life of chilled meat. International Journal of Molecular Sciences, 20(5), 1184. Doi:10.3390/ijms20051184
Fitch-Vargas, P. R., Aguilar-Palazuelos, E., de Jesús Zazueta-Morales, J., Vega-García, M. O., Valdez-Morales, J. E., Martínez-Bustos, F., & Jacobo-Valenzuela, N. (2016). Physicochemical and microstructural characterization of corn starch edible films obtained by a combination of extrusion technology and casting technique. Journal of Food Science, 81(9), E2224–E2232. Doi: 10.1111/1750-3841.13416
Fitzpatrick, P., Meadows, J., Ratcliffe, I., & Williams, P. A. (2013). Control of the properties of xanthan/glucomannan mixed gels by varying xanthan fine structure. Carbohydrate Polymers, 92(2), 1018–1025. https://doi.org/10.1016/j.carbpol.2012.10.049
Freitas, I. R., Cortez-Vega, W. R., Pizato, S., Prentice-Hernández, C., & Borges, C. D. (2013). Xanthan gum as a carrier of preservative agents and calcium chloride applied on fresh-cut apple. Journal of Food Safety, 33(3), 229–238. https://doi.org/10.1111/jfs.12044
Galus, S., & Kadzińska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273–283. https://doi.org/10.1016/j.tifs.2015.07.011
Garcı́a-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
Garrido, T., Peñalba, M., De La Caba, K., & Guerrero, P. (2019). A more efficient process to develop protein films derived from agro-industrial by-products. Food Hydrocolloids, 86, 11–17. https://doi.org/10.1016/j.foodhyd.2017.11.023
Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546. https://doi.org/10.1016/j.addr.2003.08.002
Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477–483. https://doi.org/10.1016/j.carbpol.2010.12.010
Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007
Guo, J., Ge, L., Li, X., Mu, C., & Li, D. (2014). Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 39, 243–250. https://doi.org/10.1016/j.foodhyd.2014.01.026
Han, J. (2002). Protein-based edible films and coatings carrying antimicrobial agents. In A. Gennadios (Ed.), Protein-Based Films and Coatings. CRC Press, Boca Raton, Flórida.
Han, J. H. (2003). Antimicrobial food packaging. In R. Ahvenainen (Ed.), Novel Food Packaging Techniques (pp. 50–70). Woodhead Publishing, Sawston,Cambridge.
Han, J. H., Hwang, H. M., Min, S., & Krochta, J. M. (2008). Coating of peanuts with edible whey protein film containing α-tocopherol and ascorbyl palmitate. Journal of Food Science, 73(8), E349–E355. Doi: 10.1111/j.1750-3841.2008.00910.x
Hernández-Guerrero, S. E., Balois-Morales, R., Palomino-Hermosillo, Y. A., López-Guzmán, G. G., Berumen-Varela, G., Bautista-Rosales, P. U., & Alejo-Santiago, G. (2020). Novel edible coating of starch-based stenospermocarpic mango prolongs the shelf life of mango “Ataulfo” fruit. Journal of Food Quality, 3, 1-9. https://doi.org/10.1155/2020/1320357
Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Ali-Najafi, M., & Hosseini, M. (2019). A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life, 19, 94-103. https://doi.org/10.1016/j.fpsl.2018.12.002
Ivanič, F., Jochec-Mošková, D., Janigová, I., & Chodák, I. (2017). Physical properties of starch plasticized by a mixture of plasticizers. European Polymer Journal, 93, 843–849. DOI:10.1016/j.eurpolymj.2017.04.006
Jamshidian, M., Arab Tehrany, E., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9, 552-572. https://doi.org/10.1111/j.1541-4337.2010.00126.x
Jeevahan, J., Durairaj, R. B., Mageshwaran, G., & Joseph, G. B. (2017). A brief review on edible food packing materials. Journal of Global Engineering Problems and Solutions, 1(1), 9-19.
Jouki, M., Khazaei, N., Ghasemlou, M., & Nezhad, M. H. (2013). Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers, 96(1), 39–46. https://doi.org/10.1016/j.carbpol.2013.03.077
Kowalczyk, D. (2016). Biopolymer/candelilla wax emulsion films as carriers of ascorbic acid: a comparative study. Food Hydrocolloids, 52, 543–553. https://doi.org/10.1016/j.foodhyd.2015.07.034
Krochta, J. M. (2002). Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. In A. Gennadios (Ed.), Protein-Based Films and Coatings (pp. 1–41). New York, NY: CRC Press.
Laohakunjit, N., & Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch, 56 (8), 348–356. https://doi.org/10.1002/star.200300249
Lieberman, E., & Gilbert, S. (2007). Gas permeation of collagen films as affected by cross‐linkage, moisture, and plasticizer content. Journal of Polymer Science: Polymer Symposia, 41, 33–43. DOI:10.1002/polc.5070410106
Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004
Liu, H., Song, W., Chen, F., Guo, L., & Zhang, J. (2011). Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules, 44(6), 1513–1522. https://doi.org/10.1021/ma1026934
Liu, Q., Zhang, M., Bhandari, B., Xu, J., Yang, C. (2020). Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control, 107, 106771. https://doi.org/10.1016/j.foodcont.2019.106771
Mahcene, Z., Khelil, A., Hasni, S., Akman, P. K., Bozkurt, F., Birech, K., & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124–132. https://doi.org/10.1016/j.ijbiomac.2019.12.093
Mahmoud, K. H. (2016). Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157, 153–157. https://doi.org/10.1016/j.saa.2015.12.029
Mahmoudian, S., Wahit, M. U., Ismail, A. F., & Yussuf, A. A. (2012). Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydrate Polymers, 88(4), 1251–1257. https://doi.org/10.1016/j.carbpol.2012.01.088
Martínez-Ortiz, M. A., Palma-Rodríguez, H. M., Montalvo-González, E., Sáyago-Ayerdi, S. G., Utrilla-Coello, R., & Vargas-Torres, A. (2019). Effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit. Scientia Horticulturae, 256, 108604. https://doi.org/10.1016/j.scienta.2019.108604
Menzel, C., González-Martínez, C., Chiralt, A., & Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers, 214, 142–151. https://doi.org/10.1016/j.carbpol.2019.03.022
Mohamed, S. A. A., El-Sakhawy, M., El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid - based natural edible films in food packaging: A Review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
Naira, L. S., Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
Nakashima, A. Y., Chevalier, R. C., Cortez-Vega, W. R. (2016). Desenvolvimento e caracterização de filmes de colágeno com adição de óleo essencial de cravo-da-índia. Journal of Bioenergy and Food Science, 3(1), 50–57. DOI:http://dx.doi.org/10.18067/jbfs.v3i1.86
Nayik, G. A., Majid, I., Kumar, V. (2015). Developments in edible films and coatings for the extension of shelf life of fresh fruits. American Journal of Nutrition and Food Science, 2, 16-20. DOI:10.12966/ajnfs
Nguyen, T. T., Thi Dao, U. T., Thi Bui, Q. P., Bach, G. L., Ha Thuc, C. N., & Ha Thuc, H. (2020). Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Progress in Organic Coatings, 140, 105487. https://doi.org/10.1016/j.porgcoat.2019.105487
Oetterer, M., Regitano-D’Arce, M. A. B., & Spoto, M. H. F. (2006). Fundamentos de Ciência e Tecnologia de Alimentos. In Barueri – São Paulo: Manole. Barueri, SP: Manole.
Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166. https://doi.org/10.1016/j.foodchem.2010.02.033
Oliveira da Silva, A., Cortez-Vega, W. R., Prentice, C., & Fonseca, G. G. (2019). Development and characterization of biopolymer films based on bocaiuva (Acromonia aculeata) flour. International Journal of Biological Macromolecules, 155, 1157-1168. https://doi.org/10.1016/j.ijbiomac.2019.11.083
Oliveira, P. D., Vendruscolo, C. T., Borges, C. D., Michel, R. C., & Lomba, R. T. (2013). Avaliação Comparativa das propriedades de xantanas produzidas pelo patovar pruni e clairana com xantana comercial para predição de uso. Polímeros, 23(3), 417–424. https://doi.org/10.4322/polimeros.2013.086
Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., De Moura, M. R., Mattoso, L. H. C., & McHugh, T. H. (2017). Recent advances on edible films based on fruits and vegetables - A Review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169. https://doi.org/10.1111/1541-4337.12281
Oyama, H. T. (2009). Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer. Polymer, 50(3), 747–751. https://doi.org/10.1016/j.polymer.2008.12.025
Pachence, J. M., Bohrer, M. P., & Kohn, J. (2007). Biodegradable Polymers. In: Lanza, B., Langer, C., Vacanti, P., 3ed, Elsevier, Amesterdã.
Paiva, L. B., Morales, A. R., & Guimarães, T. R. (2006). Propriedades mecânicas de nanocompósitos de polipropileno e montmorilonita organofílica. Polímeros, 16(2), 136–140. http://dx.doi.org/10.1590/S0104-14282006000200014
Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O’Donnell, C. P., Bourke, P., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science and Technology, 35(1), 5-17. https://doi.org/10.1016/j.tifs.2013.10.009
Pavlath, A. E., & Orts, W. (2009). Edible Films and Coatings: Why, What, and How? In K. Huber & M. E. Embuscado (Eds.), Edible Films and Coatings for Food Applications (pp. 1–23). Springer, New York.
Pelissari, F. M., Ferreira, D. C., Louzada, L. B., Santos, F., Corrêa, A. C, Moreira, F. K. V., & Mattoso, L. H. (2019). Starches for Food Application. Starch-Based Edible Films and Coatings: An Ecofriendly Alternative for Food Packaging. In: Clerice, M. T. P. S., & Schmiele, M. Academic Press, Cambridge, Massachusetts.
Pellá, M. C. G., Silva, O. A., Pellá, M. G., Beneton, A. G., Caetano, J., Simões, M. R., & Dragunski, D. C. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chemistry, 309, 125764. https://doi.org/10.1016/j.foodchem.2019.125764
Piermaria, J., Bosch, A., Pinotti, A., Yantorno, O., Garcia, M. A., & Abraham, A. G. (2011). Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 25(5), 1261–1269. https://doi.org/10.1016/j.foodhyd.2010.11.024
Pirsa, S., Karimi Sani, I., Pirouzifard, M. K., & Erfani, A. (2020). Smart film based on chitosan/Melissa officinalis essences/ pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A, 37(4), 634–648. https://doi.org/10.1080/19440049.2020.1716079
Pizato, S., Borges, J. A., Martins, V. G., Prentice, C., & Cortez-Vega, W. R. (2015). Whitemouth croaker (Micropogonias furnieri) protein isolate and organoclay nanocomposite coatings on shelf life and quality of fresh-cut pear. International Food Research Journal, 22, 163–170.
Pizato, S., Santos, B. M. M., Santiago, N. G., Chevalier, R. C., Pinedo, R. A., & Cortez-Vega, W. R. (2020). Use of chitosan and xanthan gums to extend the shelf life of minimally processed broccoli (Brassica oleracea L. Italica). Carpathian Journal of Food Science and Technology, 12(1), 157–167. https://doi.org/10.34302/crpjfst/2020.12.1.15
Preiss, J. (2018). Plant starch synthesis. Starch in Food. Woodhead Publishing, Sawston,Cambridge.
Pushpadass, H. A., Marx, D. B., & Hanna, M. A. (2008). Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch, 60(10), 527–538. https://doi.org/10.1002/star.200800713
Qiao, C., Chen, G., Zhang, J., & Yao, J. (2016). Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloids, 55, 19–25. https://doi.org/10.1016/j.foodhyd.2015.11.005
Qiao, X., Tang, Z., & Sun, K. (2011). Plasticization of corn starch by polyol mixtures. Carbohydrate Polymers, 83(2), 659–664. https://doi.org/10.1016/j.carbpol.2010.08.035
Randazzo, W., Jiménez-Belenguer, A., Settanni, L., Perdones, A., Moschetti, M., Palazzolo, E., Guarrasi, V., Vargas, M., Germanà, M. A., & Moschetti, G. (2016). Antilisterial effect of citrus essential oils and their performance in edible film formulations. Food Control, 59, 750–758. https://doi.org/10.1016/j.foodcont.2015.06.057
Rasheed, F., Kuktaite, R., Hedenqvist, M. S., Gällstedt, M., Plivelic, T. S., & Johansson, E. (2016). The use of plants as a “green factory” to produce high strength gluten-based materials. Green Chemistry, 18(9), 2782–2792.
Ratnayake, W. S., & Jackson, D. S. (2008). Advances in Food and Nutrition Research. In: Taylor, S. L. Starch gelatinization Elsevier, Amesterdã.
Razavi, S. M. A., Mohammad, A., & Zahedi, A. Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43, 290–298. https://doi.org/10.1016/j.foodhyd.2014.05.028
Rhim, J.-W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433. DOI:10.1080/10408390600846366
Rocha, M., Loiko, M. R., Tondo, E. C., & Prentice, C. (2014). Physical, mechanical and antimicrobial properties of Argentine anchovy (Engraulis anchoita) protein films incorporated with organic acids. Food Hydrocolloids, 37, 213–220. https://doi.org/10.1016/j.foodhyd.2013.10.017
Rodrigues, D. C., Cunha, A. P., De Brito, E. S., Gallao, M., De Azeredo, H. M. C., & Rodrigues D. C. (2016). Mesquite seed gum and palm fruit oil emulsion edible films: influence of oil content and sonication. Food Hydrocolloids, 56, 227–235. https://doi.org/10.1016/j.foodhyd.2015.12.018
Rodríguez, C. M., Yépez, C. V., González, J. H. G., Ortega-Toro, R. (2020). Effect of a multifunctional edible coating based on cassava starch on the shelf life of Andean blackberry. Heliyon, 6(5):e03974. https://doi.org/10.1016/j.heliyon.2020.e03974
Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends in Food Science & Technology, 20(10), 438–447. https://doi.org/10.1016/j.tifs.2009.05.002
Romani, V. P., Olsen, B., Collares, M. P., Oliveira, J. R. M., Prentice, C., & Martins, V. G. (2019a). Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids, 94, 210–216. https://doi.org/10.1016/j.foodhyd.2019.03.021
Romani, V. P., Olsen, B., Pinto Collares, M., Meireles Oliveira, J. R., Prentice, C., & Guimarães Martins, V. (2019b). Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids, 94, 210–216. https://doi.org/10.1016/j.foodhyd.2019.03.021
Roy, S., Rhim, & J. W. (2019). Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids, 94, 391–398. https://doi.org/10.1016/j.foodhyd.2019.03.038
Safaei, M., & Taran, M. (2018). Optimized synthesis, characterization, and antibacterial activity of an alginate-cupric oxide bionanocomposite. Journal of Applied Polymer Science, 135(2), 45682. https://doi.org/10.1002/app.45682
Sejidov, F. T., Mansoori, Y., & Goodarzi, N. (2005). Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. Journal of Molecular Catalysis A: Chemical, 240(1), 186–190. https://doi.org/10.1016/j.molcata.2005.06.048
Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639–644. https://doi.org/10.1016/j.foodres.2006.01.013
Shanks, R., & Kong, I. (2012). Thermoplastic starch. In El-Sonbati, I. K. E. A. Z (Ed.), Thermoplastic Elastomers (p. Ch. 6), Intech Open, London, UK.
Singh, P., Chatli, A. S., & Mehndiratta, H. K. (2018). Development of starch based edible films. International Journal of Development Research, 08(10), 23501–23506.
Soares, N. F. F., Silva, S. A., Pires, A. C. S., Camilloto, G. P., & Silva, P. S. (2009). Novos desenvolvimentos e aplicações em embalagens de alimentos. Revista Ceres, 56, 370–378.
Souza, C. O., Silva, L. T., & Druzian, J. I. (2012). Estudo comparativo da caracterização de filmes biodegradáveis de amido de mandioca contendo polpas de manga e de acerola. Química Nova, 35(2), 262–267. https://doi.org/10.1590/S0100-40422012000200006
Spotti, M. L., Cecchini, J. P., Spotti, M. J., & Carrara, C. R. (2016). Brea Gum (from Cercidium praecox) as a structural support for emulsion-based edible films. LWT-Food Science and Technology, 68, 127–134. https://doi.org/10.1016/j.lwt.2015.12.018
Tanaka, M., Iwata, K., Sanguandeekul, R., Handa, A., & Ishizaki, S. (2001). Influence of plasticizers on the properties of edible films prepared from fish water-soluble proteins. Fisheries Science, 67(2), 346–351. https://doi.org/10.1046/j.1444-2906.2001.00237.x
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based edible coating formulation: Optimization and its application to improve the postharvest quality of “Cripps pink” apple under different temperature regimes. Food Packaging and Shelf Life, 22, 100409. https://doi.org/10.1016/j.fpsl.2019.100409
Theerawitayaart, W., Prodpran, T., Benjakul, S., & Sookchoo, P. (2019). Properties of films from fish gelatin prepared by molecular modification and direct addition of oxidized linoleic acid. Food Hydrocolloids, 88, 291–300. https://doi.org/10.1016/j.foodhyd.2018.10.022
Tian, K., & Bilal, M. (2020). Research progress of biodegradable materials in reducing environmental pollution. In: Singh, P., Kumar, A., & Borthakur, A. Abatement of Environmental Pollutants; Trends and Strategies, Chapter 15, Elsevier, Amesterdã.
Tihminlioglu, F., Atik, İ. D., & Özen, B. (2010). Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. Journal of Food Engineering, 96(3), 342–347. https://doi.org/10.1016/j.jfoodeng.2009.08.018
Tokatlı, K., & Demirdöven, A. (2020). Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Scientia Horticulturae, 259, 108656. https://doi.org/10.1016/j.scienta.2019.108656
Ulutasdemir, T., & Cagri-Mehmetoglu, A. (2019). Effects of edible coating containing Williopsis saturnus var. saturnus on fungal growth and aflatoxin production by Aspergillus flavus in peanuts. Journal of Food Safety, 36(6), e12698. https://doi.org/10.1111/jfs.12698
Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. C., & Jiménez, A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2, 1-10. Doi:10.3389/fchem.2014.00006
Valencia-Sullca, C., Vargas, M., Atarés, L., & Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 75, 107–115. https://doi.org/10.1016/j.foodhyd.2017.09.008
Vargas, M., Albors, A., & Chiralt, A. (2011). Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Science, 1, 39–43. https://doi.org/10.1016/j.profoo.2011.09.007
Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., Alves, A. J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19(2), 341–349. https://doi.org/10.1016/j.foodhyd.2004.07.006Get rights and content
Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143
Wihodo, M., & Moraru, C. I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of Food Engineering, 114(3), 292–302. https://doi.org/10.1016/j.jfoodeng.2012.08.021
Wongphan, P., & Harnkarnsujarit, N. (2020). Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. International Journal of Biological Macromolecules, 156, 80–93. https://doi.org/10.1016/j.ijbiomac.2020.04.056
Yilmaz, F., & Dagdemir, E. (2012). The effects of beeswax coating on quality of Kashar cheese during ripening. International Journal of Food Science & Technology, 47(12), 2582–2589. https://doi.org/10.1111/j.1365-2621.2012.03137.x
Zavareze, E. R., Halal, S. L. M., Telles, A. C., & Prentice-Hernández, C. (2012). Filmes biodegradáveis à base de proteínas miofibrilares de pescado. Brazilian Journal of Food Technology, 15 (spe), 53–57. http://dx.doi.org/10.1590/S1981-67232012005000038
Zhang, J. F., & Sun, X. (2005). Poly(lactic acid)-based bioplastics. In Smith, R. (Ed.), Biodegradable Polymers for Industrial Applications. (pp. 251–288). Woodhead Publishing, Sawston, Cambridge.
Zhang, L., Chen, F., Lai, S., Wang, H. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT – Food Science and Technology, 96, 604–611. https://doi.org/10.1016/j.lwt.2018.06.011
Zhu, L., Olsen, C., McHugh, T., Friedman, M., Levin, C. E., Jaroni, D., Ravishankar, S. (2020). Edible films containing carvacrol and cinnamaldehyde inactivate Escherichia coli O157:H7 on organic leafy greens in sealed plastic bags. Journal of Food Safety, 40(2), e12758. https://doi.org/10.1111/jfs.12758
Zink, J., Wyrobnik, T., Prinz, T., & Schmid, M. (2016). Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. International Journal of Molecular Sciences, 17(9), 1376. Doi:10.3390/ijms17091376
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Barbara Matias Moreira dos Santos; Sandriane Pizato; William Renzo Cortez-Vega
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.