Análisis de cuantificación de recurrencia de series temporales de lluvia mensual en Pernambuco, Brasil

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i9.7737

Palabras clave:

Precipitaciones; Grafico de recurrencia; Análisis de cuantificación de recurrencia

Resumen

La precipitación es la principal variable climática que se utiliza para modelar los índices de riesgo de los desastres naturales. En este trabajo investigamos la dinámica no lineal de las series temporales mensuales de lluvias registradas de 1962 a 2012, en tres estaciones en el estado de Pernambuco, Brasil, ubicadas en regiones con diferentes regímenes de lluvia (Zona da Mata, Agreste y Sertão), proporcionada por el Laboratorio de Meteorología del Instituto de Tecnología de Pernambuco (Laboratório de Meteorologia do Instituto de Tecnologia de Pernambuco - LAMEP/ITEP). El objetivo de este trabajo es contribuir a una mejor comprensión de la distribución espacio-temporal de las precipitaciones en el estado de Pernambuco. Para llevar a cabo la investigación, la metodología de la teoría de dinámica no lineal, Grafico de recurrencia (RP) que permite distinguir entre diferentes tipos de procesos subyacentes. Los resultados mostraron que el régimen de lluvia en la región semiárida de Sertão se caracteriza por un comportamiento determinista menos fuerte y menos complejo, en comparación con Zona da Mata y Agreste, donde identificamos transiciones entre el tipo de dinámica caótica y no estacionaria. Para la región de transición de Agreste, la dinámica de la lluvia mostró una memoria más fuerte con un tiempo de predicción medio más largo, mientras que la dinámica de la lluvia en la región con clima subhúmedo, Zona da Mata, se caracteriza por estados laminares (que cambian lentamente).

Citas

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728.

Afsar, O., Tirnakli, U., & Marwan, N. (2018). Recurrence Quantification Analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease. Scientific reports, 8(1), 9102.

Bastos, J. A., & Caiado, J. (2011). Recurrence quantification analysis of global stock markets. Physica A: Statistical Mechanics and its Applications, 390(7), 1315-1325.

Buytaert, W., Celleri, R., Willems, P., De Bievre, B., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of hydrology, 329(3-4), 413-421.

Chadwick, R., Good, P., Martin, G., & Rowell, D. P. (2016). Large rainfall changes consistently projected over substantial areas of tropical land. Nature Climate Change, 6(2), 177-181.

Debortoli, N. S., Camarinha, P. I. M., Marengo, J. A., & Rodrigues, R. R. (2017). An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Natural hazards, 86(2), 557-582.

Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., & Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124(1), 90-108.

Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. EPL (Europhysics Letters), 4(9), 973.

Hastenrath, S. (2012). Exploring the climate problems of Brazil’s Nordeste: a review. Climatic Change, 112(2), 243-251.

Jha, S. K., & Sivakumar, B. (2017). Complex networks for rainfall modeling: spatial connections, temporal scale, and network size. Journal of Hydrology, 554, 482-489.

Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7). Cambridge university press.

Longobardi, A., & Villani, P. (2010). Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International journal of Climatology, 30(10), 1538-1546.

Lyra, G. B., Oliveira‐Júnior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34(13), 3546-3558.

Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change, 129(1-2), 103-115.

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438(5-6), 237-329.

Maslin, M., & Austin, P. (2012). Uncertainty: Climate models at their limit?. Nature, 486(7402), 183.

Medeiros, E. S. D., Lima, R. R. D., Olinda, R. A. D., & Santos, C. A. C. D. (2019). Modeling Spatiotemporal Rainfall Variability in Paraíba, Brazil. Water, 11(9), 1843.

Melo Santos, A. M., Cavalcanti, D. R., Silva, J. M. C. D., & Tabarelli, M. (2007). Biogeographical relationships among tropical forests in north‐eastern Brazil. Journal of Biogeography, 34(3), 437-446.

Oliveira, P. T., e Silva, C. S., & Lima, K. C. (2017). Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology, 130(1-2), 77-90.

Panagoulia, D., & Vlahogianni, E. I. (2014). Nonlinear dynamics and recurrence analysis of extreme precipitation for observed and general circulation model generated climates. Hydrological Processes, 28(4), 2281-2292.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia do trabalho científico.[e-Book]. Santa Maria. Ed. UAB/NTE/UFSM. Available at: https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. Journal of climate, 17(22), 4407-4424.

Silva, A. S. A., Stosic, B., Menezes, R. S. C., & Singh, V. P. (2019). Comparison of interpolation methods for spatial distribution of monthly precipitation in the state of Pernambuco, Brazil. Journal of Hydrologic Engineering, 24(3), 04018068.

Stosic, T., Telesca, L., de Souza Ferreira, D. V., & Stosic, B. (2016). Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study. Journal of Hydrology, 540, 1136-1145.

Tan, X., & Gan, T. Y. (2017). Multifractality of Canadian precipitation and streamflow. International Journal of Climatology, 37, 1221-1236.

Webber Jr, C. L., & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in contemporary nonlinear methods for the behavioral sciences, 94(2005), 26-94.

Publicado

01/09/2020

Cómo citar

SANTANA, L. I. T. de .; SILVA, A. S. A. da .; MENEZES, R. S. C. .; STOSIC, T. Análisis de cuantificación de recurrencia de series temporales de lluvia mensual en Pernambuco, Brasil. Research, Society and Development, [S. l.], v. 9, n. 9, p. e637997737, 2020. DOI: 10.33448/rsd-v9i9.7737. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7737. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas