Composición físico-química y potencial antimicrobiano de la miel sin aguijón: un alimento de calidad diferenciada

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.8223

Palabras clave:

Antibiograma; Calidad; Abejas sin aguijón; Resistencia; Antibióticos; Alimentos.

Resumen

Este estudio tuvo como objetivo evaluar la actividad antimicrobiana de diversas mieles frente a cepas de bacterias gram negativas y positivas, así como determinar los parámetros físico-químicos de estas mieles. Se evaluaron siete mieles de varias especies de abejas sin aguijón. Los parámetros físico-químicos evaluados fueron pH, humedad, actividad del agua, acidez, ceniza, conductividad eléctrica y color. La actividad antimicrobiana se determinó mediante pruebas de agar de difusión en disco y concentraciones inhibitorias mínimas. Encontramos que existe una relación entre los parámetros físico-químicos y la actividad antimicrobiana. La concentración mínima inhibitoria del 25% de miel fue capaz de inhibir el crecimiento de bacterias tanto grampositivas como negativas; la mayor eficacia se verificó para las especies de abejas Melipona mondury, M. quadrifasciata, Scaptotrigona bipunctata y Tetragona clavipes. En cuanto al sinergismo, Escherichia coli mantuvo su perfil de sensibilidad en relación a todas las mieles estudiadas combinadas con antimicrobianos. Un factor importante a considerar es la concentración de miel capaz de sensibilizar al microorganismo, ya que se ha demostrado que depende de la especie de abeja sin aguijón. Sin embargo, todas las mieles mostraron actividad antimicrobiana en varios métodos de análisis. Estos datos sugieren que la miel es una alternativa prometedora para sensibilizar a los microorganismos resistentes, tanto para la salud de los seres humanos como de los animales.

Citas

Ahmed, S. & Othman, N. H. (2015). Review of the Medicinal Effects of Tualang Honey and a Comparison with Manuka Honey. Journal of Medical Sciences. 20(3): 6-13.

Alves, R. M. O., Carvalho, C. A. L., Souza, B. A., Marchini, L. C. (2005). Características físico-químicas de amostras de mel de Melipona mandaçaia Smith (Hymenoptera: Apidae). Ciência e Tecnologia de Alimentos. 25, 644-650.

Almeida-Muradian, L. B., Matsuda, A. H., Bastos, D. H. M. (2007). Physico-chemical parameters of Amazon Melipona honey. Química Nova. 30(3), 707-708.

Alvarez-Suarez, J. M., Tulipani, S., Díaz, D., Estevez, Y., Romandini, S., Giampieri, F., Damiani, E., Astolfi, P., Bompadre, S., & Battino, M. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 48(8-9), 2490–2499.

Ballivián, J.M.P.P. (2008) Abelhas nativas sem ferrão. São Leopoldo: Oikos. 128p.

Basualdo, C., Sgroy, V., Finola, M. S., & Marioli, J. M. (2007). Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Veterinary microbiology, 124(3-4), 375–381.

Bianchi, E. M. (1981). La miel, características y composición, Análisis y Adulteraciones, UNSE-CEDIA: Santiago Del Estero, 1981.

Bogdanov, S. (1999). Honey quality and international regulatory standards: review by International Honey Comission. Bee World. 80(2): 61-69.

Bogdanov, S.; Martin, P.; Lüllmann, C. (1997). Harmonised methods of the European Honey Commission. Apidologie. 1997:1-59.

Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: a review. Journal of the American College of Nutrition, 27(6), 677–689.

Boorn, K. L., Khor, Y. Y., Sweetman, E., Tan, F., Heard, T. A., & Hammer, K. A. (2010). Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. Journal of applied microbiology. 108(5), 1534–1543.

Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B., Chaves, F. C., Silva, W. P. da, Zanusso, J. T., Dutra, I. (2016). Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT - Food Science and Technology. 65: 333-340.

Brasil. (2000). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 11, de 20 de outubro de 2000. Regulamento Técnico de Identidade e Qualidade do Mel. MAPA, Brasília, 2000.

Brasil. (2003). Agência Nacional de Vigilância Sanitária (ANVISA). Padronização dos Testes de Sensibilidade a Antimicrobianos por Disco-difusão: Norma Aprovada. (8a ed.), 23(1).

Campeau, M. E. M., Patel, R. (2014). Antibiofilm Activity of Manuka Honey in Combination with Antibiotics. International Journal of Bacteriology.2014:1-7.

Campos, F. S., Gois, G. C., & Carneiro, G. G. (2010). Parâmetros físico-químicos do mel de abelhas Melipona scutellaris produzido no Estado da Paraíba. FAZU em Revista, 1(7), 186-190.

Chuttong B, Chanbang Y, Sringarm K, Burgett M. (2016). Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry. 192,149-155.

CLSI (2015). Clinical and Laboratory Standards Institute.Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement. M100-S18. Wayne, PA, USA, 2015.

CLSI (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Appproved standard. (9a ed.) Wayne, PA, USA, 2012.

CLSI (2005). Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement. M100-S15. Wayne, PA, USA.

CLSI (2003). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, (6a ed.), M7-A6. Wayne, PA, USA.

Cortopassi-Laurino, M., Gelli D. S., 1991. Pollen Analysis: physicochemical properties and antibacterial action of brazilian honeys from africanized honeybees (Apis mellifera l) and stingless bees, Apidologie. 22(1), 61-73.

Crane, E. (1990). Bees and beekeeping: Science, Practice and World Resources. Oxford, UK: Heinemann Newnes.

Ekhtelat, M., Ravaji, K., & Parvari, M. (2016). Effect of Iranian Ziziphus honey on growth of some foodborne pathogens. Journal of natural science, biology, and medicine. 7(1), 54–57.

Fikselová, M., Kačániová, M., Hleba, L., Mellen, M., Vukovič, N. Malgorzata D. (2014). Antimicrobial and Antioxidant Activity of Natural Honeys of Different Origin. Animal Science and Biotechnologies. 47(2):96-102.

Hoffmann, F. L. (2001). Fatores limitantes à proliferação de microorganismos em alimentos, Brasil Alimentos, São José do Rio Preto.

Hussain, M. B., Hannan, A., Akhtar, N., Fayyaz, G. Q., Imran, M., Saleem, S., & Qureshi, I. A. (2015). Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. BMC Complementary and Alternative medicine. 15:32.

Instituto Adolfo Lutz – IAL. (2008). Normas analíticas do Instituto Adolfo Lutz. Métodos químicos e físicos para análise de alimentos. (4a ed.) São Paulo: IMESP.

Irish, M., Carter, D. A., Shokohi, T., Blair, S. E. (2006). Honey has an antifungal effect against Candida species. Medical Mycology. 44(3):289-291.

Jenkins, R., Chapagain, S. (2014). Effect of antibiotics in combination with manuka honey on Streptococcus pyogenes. Poster Presentation Australian Society for Microbiology Annual Scientific Meeting 2014.

Kowalski, S., Lukasiewicz, M., & Berski, W. (2013). Applicability of physico-chemical parameters of honey for identification of the botanical origin. Acta scientiarum polonorum. Technologia alimentaria. 12(1), 51–59.

Kuroishi, A. M.; Queiroz, M. B.; Almeida, M. M. de; Quast, L. B. Avaliação da cristalização de mel utilizando parâmetros de cor e atividade de água. Brazilian Journal Food Technology.15(1), 84-91.

Kwakman, P. H., Te Velde, A. A., de Boer, L., Vandenbroucke-Grauls, C. M., & Zaat, S. A. (2011). Two major medicinal honeys have different mechanisms of bactericidal activity. PloS one, 6(3), e17709.

Lage, L. G.A., Coelho, L. L.; Resende, H. C.; Tavares, M. G.; Campos, L.A.O.; Fernandes-Salomão, T.M. (2012). Honey physicochemical properties of three species of the brazilian Melipona. Anais da Academia Brasileira de Ciências. 84: 605-608.

Laallam, H.; Boughediri, L.; Bissati, S.; Menasria, T.; Mouzaoui, M.S.; Hadjadj, S.; Hammoudi, R.; Chenchouni, H. (2015). Modeling the synergistic antibacterial effects of honey characteristics of different botanical origins from the Sahara Desert of Algeria. Frontiers in Microbiology. 6: 1239.

Madaleno, I. (2015). Plantas medicinais consumidas em Cochim, no século XVI e na atualidade. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas. 10: 109-142.

Masoud, E.; Alqurashi, A.; Alamin, M. (2015) Synergistic Effects of Honeys and Commonly Used Antibiotics on Gram Positive Bacteria. Journal Wulfenia. 22: 198-202.

Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. (2008). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of manuka (Leptospermum scoparium) honeys from New Zealand. Molecular Nutrition & Food Research. 52:483–489.

Mercês, M. D; Peralta, E. D.; Uetanabaro, A. P. T.; Lucchese, A. M. (2013). Atividade antimicrobiana de méis de cinco espécies de abelhas brasileiras sem ferrão. Ciência Rural. 43(4): 672-675.

Michener, C. D. (2013). The Meliponini. In P. Vit et al. (Eds.), Pot-honey a legacy of stingless bees. New York: Springer.

McLoone, P., Warnock, M., & Fyfe, L. (2016). Honey: A realistic antimicrobial for disorders of the skin. Journal of Microbiology, Immunology and Infection, 49(2): 161-167.

Moo-Huchin, V. M.; González-Aguilar, G. A.; Lira-Maas, J. D.; Pérez-Pacheco, E.; Estrada-León, R.; Moo-Huchin, M. I.; Sauri-Duch, E. 2015. Physicochemical Properties of Melipona beecheii Honey of the Yucatan Peninsula. Journal of Food Research. 4: 689-691.

Nishio, E. K.; Krupiniski, M. T.; Kobayashi, R. K. T.; Proni, E. A.; Nakazato, G. (2014). Avaliação da Atividade Antibacteriana de Dois Méis de Abelhas Indígenas Sem Ferrão Contra Bactérias de Importância Alimentar. In: Anais do 12º Congresso Latinoamericano de Microbiologia e Higiene de Alimentos – MICROAL. 1(1). São Paulo.

Nishio, E. K.; Ribeiro, J. M.; Oliveira, A. G.; Andrade, C. G. T. J.; Proni, E. A.; Kobayashi, R. K. T.; Nakazato, G. (2016). Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S. postica Latreille, 1807. Scientific Reports. 6:21641.

Peralta, E. D. (2010). Atividade antimicrobiana e composição química de méis do Estado da Bahia. Tese (doutorado) – Programa de Pós-Graduação em Biotecnologia. Universidade Estadual de Feira de Santana, Feira de Santana. 265f.

Perez, C., Pauli, M. and Bazerque, P. (1990) An Antibiotic Assay by Agar Well Diffusion Method. Acta Biologiae et Medicinae Experimentalis. 15: 113-115.

Pimentel, R. B. Q., Costa, C. A., Albuquerque, P. M.; Duvoisin Junior, S. (2013). Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey. BMC Complementary and Alternative Medicine. 151: 69-78.

Posey, D. A. (1987). Etnoentomologia de tribos indígenas da amazonia. In: RIBEIRO, D. Suma etnológica brasileira: Etnobiologia. Petrópolis: FINEP.

Sherlock, O., Dolan, A., Athman, R., Power, A., Gethin, G., Cowman, S.; Humphreys, H. (2010). Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine. 10, 47.

Suntiparapop, K., Prapaipong, P., Chantawannakul, P. (2012). Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps), Journal of Apicultural Research. 51(1), 45-52.

Temaru, E., Shimura, S., Amano, K., & Karasawa, T. (2007). Antibacterial activity of honey from stingless honeybees (Hymenoptera; Apidae; Meliponinae). Polish journal of microbiology. 56(4), 281–285.

Wasfi, R., Elkhatib, W. F., Khairalla, A. S. (2016) Effects of Selected Egyptian Honeys on the Cellular Ultrastructure and the Gene Expression Profile of Escherichia coli. PLoS ONE 11(3): e0150984.

Descargas

Publicado

16/10/2020

Cómo citar

BATISTON, T. F. T. P. .; FRIGO, A.; STEFANI, L. M.; SILVA , A. S. D. .; ARAUJO, D. N. Composición físico-química y potencial antimicrobiano de la miel sin aguijón: un alimento de calidad diferenciada. Research, Society and Development, [S. l.], v. 9, n. 10, p. e7099108223, 2020. DOI: 10.33448/rsd-v9i10.8223. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8223. Acesso em: 1 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas