Determinación del potencial fenólico, antioxidante y antimicrobiano de extractos de hojas de Pereskia grandifolia Haw

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.8483

Palabras clave:

PANC; Ora-pro-nóbis; Compuestos bioactivos; Espectrofotometría; Patógenos.

Resumen

La investigación en Plantas Alimenticias No Convencionales (PANC) sobre la presencia de compuestos bioactivos y antimicrobianos es escasa y es necesaria la ampliación del conocimiento sobre sus propiedades. En este estudio, se investigaron cuatro tipos diferentes de extractos (acuoso e hidroalcohólico obtenidos por reflujo y sonicación) de ora-pro-nóbis (Pereskia grandifolia Haw) en busca de la presencia de compuestos fenólicos, antioxidantes y antibacterianos. Los extractos de Pereksia grandifolia Haw obtenidos por reflujo fueron más eficientes que la sonicación, ya que extrajeron una mayor cantidad de compuestos fenólicos, antioxidantes, flavonas y flavonoles. En cuanto al solvente, se encontró que el hidroalcohólico permitió una mayor cuantificación de flavonoides totales (flavonas y flavonoles, flavanonas y dihidroflavonoles) y antioxidantes (medidos por los métodos de DPPH, molibdato y poder quelante). Cuando se utilizó agua como disolvente extractor, se observaron mayores cantidades de compuestos fenólicos totales y antioxidantes (medidos por DPPH y poder quelante). Todos los extractos mostraron actividad inhibidora frente a Staphylococcus aureus y Pseudomonas aeruginosa, siendo los extractos acuosos obtenidos por reflujo y sonicación los que presentaron los mayores halos de inhibición. Sin embargo, cuando se determinó la concentración bactericida mínima, solo el extracto hidroalcohólico obtenido por reflujo mostró un resultado efectivo en las concentraciones ensayadas. La caracterización y cuantificación de los compuestos fenólicos, antioxidantes y antibacterianos de Pereskia grandifolia Haw aportan información importante para incrementar el uso de esta planta, como fuente alternativa de compuestos beneficiosos para la salud y con potencial antimicrobiano.

Citas

Abdelwahab, S. I. (2013). Anticancer, antioxidant and antibacterial activities of different extracts of Pereskia grandifolia Haw. (Cactaceae). Applied Science Branch, 2(1): 20-27.

Ahn, M.R., Kumazawa, S., Hamasaka, T. et al. (2004). Antioxidant activity and constituents of propolis collected in various areas of Korea. Journal of Agricultural and Food Chemistry, 52(4):7286-7292.

Boulanouar, B., Abdelaziz, G., Aazza, S. et al. (2013). Antioxidant activities of eight Algerian plant extracts and two essential oils. Industrial Crops and Products, 46(1): 85-96.

Brand-Williams, W., Cuvelier, M. E, & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science Technology, 28(1): 25–30.

Brugalli, I. (2003). Alimentação alternativa: a utilização de fitoterápicos ou nutracêuticos como moduladores da imunidade e desempenho animal. Simpósio sobre manejo e nutrição de aves e suínos. Anais: 167-182.

Cárcel, J. A., García-Pérez, J. V., Benedito, J. et al. (2012). Food process inovation through new technologies: use of ultrasound. Journal of Food Engineering, 110 (2):200–207.

Carvalho, J. L. S, Cunico, M. M., De Dias, J. F. G. et al. (2009). Term-stability of extractive processes from Nasturtium officinale R. Br., brassicaceae for soxhlet modified system. Quimica Nova, 32 (4): 1031–1035.

Choi, C. W., Kim, S. C, et al. (2003). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163 (6): 1161-1168.

Clement, C. R. (1999). 1492 and the loss of amazonian crop genetic resources. I. The relation between domestication and human population decline. Economic Botany, 53(2), 188–202.

CLSI (Clinical and Laboratory Standards Institute) (2017). M100 – Peformance Standards for antimicrobial susceptibility testing. Retrieved from https://clsi.org/media/1469/m100s27_sample.pdf

CLSI (Clinical and Laboratory Standards Institute) (2018). M07 – Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Retrieved from https://clsi.org/media/1928/m07ed11_sample.pdf

Corrêa, R. C. G., Barros, L., Fernandes, A., et al. (2018). A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food & Function, 9(3): 1465–1474.

Costa, M. G. M., Fonteles, T. V., Jesus, A. L. T. et al. (2013). High-intensity ultrasound processing of pineapple juice. Food Bioprocess.Technology, 6:997–1006.

Dai, J., & Mumper, R. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10):7313-52.

Diplock, A. T., Charleux, J. L., Crozier-Willi, G,. at el. (1988). Functional food science and defence against reactive oxidative. British Journal of Nutrition, 80 (S1) - S77-S112.

Farzaneh, V., & Carvalho, I. S. (2015). A review of the health benefits potentials of herbal plant infusions and their mechanism of actions. Industrial Crops and Products, 65: 247-258.

Garcia, J. A. A., Corrêa, R. C. G., Barros, L. et al. (2019). Phytochemical profile and biological activities of “Ora-pro-nobis” leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food Chemistry, 1(294):302-308.

Gómez-Plaza, E., Miñano, A., & López-Roca, J. M. (2006). Comparison of chromatic properties, stability and antioxidant capacity of anthocyanin-based aqueous extracts from grape pomace obtained from different vinification methods. Food Chemistry, 97 (1): 87-94.

Harlev, E., Nevo, E., Lansky, E. P. et al. (2012). Anticancer attributes of desert plants. Anti-Cancer Drugs, 23(3):255–271.

Hayouni. E., Abedrabba, M., Bouix, M. et al. (2007). The effects of solvents and extraction methods on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry. 105 (3): 1126-1134.

Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73 (3): 285-290.

Jayasena, D. D. & Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: a review. Trends in Food Science & Technology, 34 (2): 96–108.

Kalogeropoulos, N., Konteles, S. J., Troullidou, E. (2009). Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chemistry, 116 (2): 452-61.

Kamel, C. (2000). A novel look at a classic approach of plant extracts. The International Journal on Feed, Nutrition and Technology, 8(3):16-18.

Kazama, C. C., Uchida, D. T., Canzi, K. N., et al. (2012). Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae). Journal of Ethnopharmacology, 144(1):86-93.

Kinupp, V. F. & Lorenzi, H. (2014). Plantas Alimentcias Não Convencionais (PANC) no Brasil. São Paulo: Instituto Plantarum de Estudos da Flora.

Leal, M. L., Alves, R. P. & Hanazaki, N. (2018). Knowledge, use, and disuse of unconventional food plants. Journal o Ethnobiology and Ethnomedicine, 14 (6).

Lemos, M. R. B., Siqueira, E. M., Arruda, S. F., et al. (2012). The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts (Dipteryx alata Vog.). Food Research International, 48 (2): 592-597.

Marques L. C., Vigo C. L. S. In: Fitoterapia: Bases científicas e tecnológicas. Preparação e padronização de extratos vegetais. Atheneu Ed. São Paulo, 2009.

Miguel, M. G., Bouchmaa, N., Aazza, S., et al. (2018). Antioxidant, anti-inflammatory and antiacetylcholinesterase activities of eleven extracts of Moroccan plants. Fresenius Environmental Bulletin, 6 (24), 1-14.

Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and purification technology, 162 (1): 68-76.

Moreira, L., Dias, L. G., Pereira. J. A., et al. (2008). Antioxidant properties, total phenols and pollen analysis of própolis samples from Portugal. Food and Chemical Toxicology, 46 (11): 3482-3485.

Morzelle, M. C. Waste of pomegranate (Punica granatum) in the prevention of Alzheimer's disease [dissertation]. São Paulo (SP). Universidade de São Paulo (USP).

Nazzaro, F., Fratianni, F., Martino, L. et al. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 6:1451-1474.

Oztürk, M. (2012). Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 34 (1): 48–54.

Park, Y. K., Ikegaki, M., Abreu, J., et al. (1998). Estudy of the Preparation of the Propolis Extracts and yours Aplications. Food Science and Technology, 18 (3): 313-318.

Pinto, N. C. C., Duque, A. P. N., Pacheco, N. R., et al. (2015). Pereskia aculeata: A plant food with antinociceptive activity. Pharmaceutical Biology, 53(12): 1780–1785.

Popova, M., Bankova, V., Butovska, D., et al. (2004). Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemical Analysis, 15(4): 235-40.

Prescott-Allen, R., & Prescott-Allen, C. (1990). How Many Plants Feed the World? Conservation Biology, 4(4), 365–374.

Prieto, P., Pineda, M., & Aguilar, M. (2004). Spectrophotometric quantitation of antioxidant capacity through the formation of a Phosphomolybdenum Complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2):337-41.

Rodrigues, A. S. (2016). Antioxidant and Antimicrobial Activity of Ora-pro-nobis Extracts (Pereskia aculeata Mill.) and Aplication in Mortadella [dissertation]. Rio Grando do Sul (RS). Universidade Federal de Santa Maria (UFSM).

Santos, A. G., Garcia, B. H., Sartor, C. F. P., et al. (2010). Estudo do efeito antimicrobiano do extrato bruto das folhas de Pereskia aculeata Mill. sobre patógenos bucais. V Mostra Interna de Trabalhos de Iniciação Científica. ISBN 978-85-61091-69-9

Scherer, R. & Godoy, H. (2014). Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity. Revista Brasileira de Plantas Medicinais, 16 (1): 41-46.

Sharif, K. M., Rahman, M. M., Zaidul, I. S. M., et al. (2013). Pharmacological Relevance of Primitive Leafy Cactuses Pereskia. Research Journal of Biotechnology, 8(12): 134-142.

Shi, J., Yu, J., Pohorly, J. J. et al. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture & Environment, 1(2): 42-47.

Sim, K. S., Sri Nurestri, A. M., & Norhanom, A. W. (2010). Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts. Pharmacognosy Magazine, 6 (23): 248-254.

Slinkard, K., Singleton, V. L. Total phenol analyses: Automation and Comparison with Manual Methods. American Journal of Enology and Viticulture (AJEV). 1977; 28 (1): 49-55.

Souza, L. F. (2014). Agronomic and bromatologic aspects, and bioactive compounds of Pereskia aculeata, Pereskia grandifolia and Anredera cordifolia. Retrieved from https://www.lume.ufrgs.br/handle/10183/110057.

Souza, L., Caputo, L., Inchausti De Barros. I. et al. (2016). Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities. International Journal of Molecular Sciences, 17(9):1478.

Spagolla, L. C., Santos, M. M., Passos, L. M. L., at al. (2019). Alcoholic extracts of total phenolics and flavonoids from rabbiteye blueberry (Vaccinium ashei) and their antioxidant activity. Revista de Ciências Farmacêuticas Básica e Aplicada, 30 (2):187-91.

Taheri, A. (2013). Antibacterial Effect of Myrtus Communis Hydro-Alcoholic Extract on Pathogenic Bacteria. Journal of Research in Medical Sciences, 15 (6):19-24.

Tasioula-Margari M. &Tsabolatidou, E. (2015). Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS. Antioxidants, 4 (3):548-562.

Turra, A. F., Marçal, F. J. B., Baretta, I. P. et al. (2007). Antioxidant Properties and Antimicrobial Susceptibility Evaluation of Pereskia grandifolia Haworth (Cactaceae). Arquivos de Ciências da Saúde da UNIPAR, 11 (1): 9- 14.

Vargas, A. C. (2017). Seasonality influence on the chemical composition and on antioxidant and antimicrobial activities of the ora-pro-nobis (Pereskia aculeata Miller) leaves [dissertation]. Paraná (PR). Universidade Tecnológica Federal do Paraná.

Vessala, M., Hemmatia, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozocin-induced diabects rats. Comparative Biochemistry and Physiology, 135(3):357-364.

Viana, M. S., Carlos, L. A., Silvas, E. C. et al. (2015). Phytochemical composition and antioxidant potential of unconventional vegetables. Horticultura Brasileira, 33 (4): 504-509.

Vizzotto, M., & Pereira, M.C. (2011). Blackberry (Rubus sp.): extraction process optimization and determination of phenolic compounds antioxidants. Revista Brasileira de Fruticultura, 33 (4): 1209-1214.

Zareisedehizadeh, S., Tan, C. H., & Koh, H. L. (2014). A review of botanical characteristics, traditional usage, chemical componentes, pharmacological activities, and safety of Pereskia bleo (Kunth) DC. Evidence-Based Complementary and Alternative Medicine, 1 (1):1-11.

Zuanazzi, J. A. S., & Montanha, J.A. (2004). Farmacognosia: da planta ao medicamento. 5. ed. Porto Alegre: Ed. da UFRGS.

Descargas

Publicado

26/09/2020

Cómo citar

VICENTE, N. F. de P.; MARTINS, H. H. de A.; CAMPIDELLI, M. L. L.; SILVA, D. M. da .; AAZZA, S. .; SOUZA, E. C. de .; BERTOLUCCI, S. K. V.; PICCOLI, R. H. Determinación del potencial fenólico, antioxidante y antimicrobiano de extractos de hojas de Pereskia grandifolia Haw. Research, Society and Development, [S. l.], v. 9, n. 10, p. e2979108483, 2020. DOI: 10.33448/rsd-v9i10.8483. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8483. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas