Fotobiomodulación como coadyuvante en el tratamiento de la lesión pulmonar aguda por sepsis
DOI:
https://doi.org/10.33448/rsd-v9i10.9024Palabras clave:
Fototerapia; Láseres; Septicemia; Lesión pulmonar; Rehabilitación.Resumen
La sepsis se considera un problema de salud importante, y la lesión pulmonar aguda (LPA) es una de las complicaciones más graves del shock séptico. Se sabe que una LPA es una enfermedad caracterizada por daño al epitelio alveolar, infiltración de células inflamatorias, aumento de la permeabilidad de la barrera alveolocapilar, edema intersticial que provocan un desequilibrio en la condición y perfusión pulmonar, con una alta tasa de morbilidad y en las unidades. cuidados intensivos. El tratamiento de la LPA tiene un coste elevado y muchas veces no es lo suficientemente eficaz y, por tanto, la búsqueda de nuevas terapias es de extrema importancia clínica. La fotobiomodulación (PBM) a través de láseres y LED tiene que ser una herramienta prometedora con buenos resultados para varias enfermedades inflamatorias, incluidos los cambios que afectan al sistema respiratorio. En este contexto, el objetivo de este estudio es proporcionar, a través de una revisión narrativa, una comprensión de la evidencia disponible actualmente sobre la importancia de la PBM en el tratamiento de los trastornos respiratorios y su posible aplicabilidad en la LPA por sepsis. Las búsquedas se realizaron en las bases de datos bibliográficas de PubMed / MEDLINE, Virtual Health Library (VHL), Web of Science y SciELO. La evidencia encontrada en este estudio apunta a que el PBM puede proponerse como soporte de la terapia médica convencional en el tratamiento de la LPA derivada de la sepsis, debido al potencial de prevenir la progresión de la lesión del parénquima pulmonar, atenuar la condición inflamatoria, optimizar el proceso de reducción y reducir el tiempo de recuperación del paciente con LPA por sepsis.
Citas
Abraham, E., Matthay, M. A., Dinarello, C. A., Vincent, J. L., Cohen, J., Opal, S. M., Glauser, M., Parsons, P., Fisher, C. J., Jr. & Repine, J. E. (2000). Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Critical care medicine, 28(1), 232–235. https://doi.org/10.1097/00003246-200001000-00039
Aimbire F., Santos F. V., Albertini R., Castro-Faria-Neto H. C., Mittmann J. & Pacheco-Soares C. (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol. Apr;8(4):603-5. doi: 10.1016/j.intimp.2007.12.007. Epub 2008 Jan 15. PMID: 18328453.
Aimbire, F., Albertine, R., de Magalhães, R. G., Lopes-Martins, R.A., Castro-Faria-Neto, H. C., Zângaro, R. A., Chavantes, M. C. & Pacheco, M. T. (2005). Effect of LLLT Ga-Al-As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers in medical science, 20(1), 11–20. https://doi.org/10.1007/s10103-005-0339-9
Aimbire, F., Albertini, R., Pacheco, M. T., Castro-Faria-Neto, H. C., Leonardo, P. S., Iversen, V. V., Lopes-Martins, R. A., & Bjordal, J. M. (2006). Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomedicine and laser surgery, 24(1), 33–37. https://doi.org/10.1089/pho.2006.24.33
Aimbire, F., Lopes-Martins, R. A., Albertini, R., Pacheco, M. T., Castro-Faria-Neto, H. C., Martins, P. S. & Bjordal, J. M. (2007). Effect of low-level laser therapy on hemorrhagic lesions induced by immune complex in rat lungs. Photomedicine and laser surgery, 25(2), 112–117. https://doi.org/10.1089/pho.2006.1041
Amirov N. B. (2002). Pokazateli membrannoĭ pronitsaemosti, mikrotsirkuliatsii, funktsii vneshnegio dykhaniia i soderzhanie mikroélementov pri medikamentozno-lazernoĭ terapii pnevmonii [Parameters of membrane permeability, microcirculation, external respiration, and trace element levels in the drug-laser treatment of pneumonia]. Terapevticheskii arkhiv, 74(3), 40–43.
Artigas, A., Bernard, G. R., Carlet, J., Dreyfuss, D., Gattinoni, L., Hudson, L., Lamy, M., Marini, J. J., Matthay, M. A., Pinsky, M. R., Spragg, R. & Suter, P. M. (1998). The American-European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. American journal of respiratory and critical care medicine, 157(4 Pt 1), 1332–1347. https://doi.org/10.1164/ajrccm.157.4.ats2-98
Assis, L., Moretti, A. I., Abrahão, T. B., Cury, V., Souza, H. P., Hamblin, M. R. & Parizotto, N. A. (2012). Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers in surgery and medicine, 44(9), 726–735. https://doi.org/10.1002/lsm.22077
Barreto, M. F., Dellaroza, M. S., Kerbauy, G & Grion, C. M. (2016). Sepsis in a university hospital: a prospective study for the cost analysis of patients' hospitalization. Revista da Escola de Enfermagem da U S P, 50(2), 302–308. https://doi.org/10.1590/S0080-623420160000200017
Bernard, G. R., Artigas, A., Brigham, K. L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J. R., Morris, A., & Spragg, R. (1994). The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American journal of respiratory and critical care medicine, 149(3 Pt 1), 818–824. https://doi.org/10.1164/ajrccm.149.3.7509706
Bjordal, J. M., Lopes-Martins, R. A. B., & Iversen, V. V. (2010) The anti-inflammatory mechanism of low level laser therapy and its relevance for clinical use in physiotherapy. Medicine 2010. 15: 286–293 Corpus ID: 27687471. doi: 10.1179/1743288X10Y.0000000001.
Borges, A. C. do N., Costa, A. L., Bezerra, J. B., Araújo, D. S., Soares, M. A. A., Gonçalves, J. N. de A., Rodrigues, D. T. da S., Oliveira, E. H. S. de, Luz, L. E. da, Silva, T. R., & Silva, L. G. de S. (2020). Epidemiology and pathophysiology of sepsis: an review. Research, Society and Development, 9(2), e187922112. https://doi.org/10.33448/rsd-v9i2.2112
Burduli, N. M., & Aksenova, I. Z. (2007). Klinicheskaia meditsina, 85(9), 58–61.
Chung, H., Dai, T., Sharma, S. K., Huang, Y. Y., Carroll, J. D., & Hamblin, M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 40(2), 516–533. https://doi.org/10.1007/s10439-011-0454-7
Costa, S. G., Barioni, É. D., Ignácio, A., Albuquerque, J., Câmara, N., Pavani, C., Vitoretti, L. B., Damazo, A. S., Farsky, S. & Lino-Dos-Santos-Franco, A. (2017). Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Scientific reports, 7(1), 12670. https://doi.org/10.1038/s41598-017-13117-5
da Cunha Moraes, G., Vitoretti, L. B., de Brito, A. A., Alves, C. E., de Oliveira, N., Dos Santos Dias, A., Matos, Y., Oliveira-Junior, M. C., Oliveira, L., da Palma, R. K., Candeo, L. C., Lino-Dos-Santos-Franco, A., Horliana, A., Gimenes Júnior, J. A., Aimbire, F., Vieira, R. P., & Ligeiro-de-Oliveira, A. P. (2018). Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor. Oxidative medicine and cellular longevity, 2018, 6798238. https://doi.org/10.1155/2018/6798238
da Silva Sergio, L. P., Thomé, A., da Silva Neto Trajano, L. A., Vicentini, S. C., Teixeira, A. F., Mencalha, A. L., de Paoli, F. & de Souza da Fonseca, A. (2019). Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats. Lasers in medical science, 34(1), 157–168. https://doi.org/10.1007/s10103-018-2656-9
da Silva, J., Dos Santos, S. S., de Almeida, P., Marcos, R. L. & Lino-Dos-Santos-Franco, A. (2020). Effect of systemic photobiomodulation in the course of acute lung injury in rats. Lasers in medical science, 10.1007/s10103-020-03119-7. Advance online publication. https://doi.org/10.1007/s10103-020-03119-7
de Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F. & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731.
https://doi.org/10.1016/j.jphotobiol.2019.111731
de Lima, F. M., Albertini, R., Dantas, Y., Maia-Filho, A. L., Santana, C., Castro-Faria-Neto, H. C., França, C., Villaverde, A. B. & Aimbire, F. (2013). Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochemistry and photobiology, 89(1), 179–188. https://doi.org/10.1111/j.1751-1097.2012.01214.x
de Lima, F. M., Moreira, L. M., Villaverde, A. B., Albertini, R., Castro-Faria-Neto, H. C. & Aimbire, F. (2011a). Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers in medical science, 26(3), 389–400. https://doi.org/10.1007/s10103-010-0874-x
de Lima, F. M., Villaverde, A. B., Albertini, R., Corrêa, J. C., Carvalho, R.L., Munin, E., Araújo, T., Silva, J. A. & Aimbire, F. (2011b). Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers in surgery and medicine, 43(5), 410–420. https://doi.org/10.1002/lsm.21053
Derbenev V. A., Mikhailov V. A. & Denisov I. N. (2000). Use of low-level laser therapy (LLLT) in the treatment of some pulmonary diseases: ten-year experience. Proc SPIE 2000;4166:323–5. doi: 10.1117/12.389506.
Erkinovna T. B., & Tulkunovna M. H. (2006) Efficacy of laser therapy in infants with infectious-inflammatory respiratory diseases. АКРОНИМ: European Science Review. ISSN: Печатный: 2310-5577. Available at: https:// cyberleninka.ru/article/n/efficacy-of-laser-therapy-in-infants-with-infec- tious-inflammatory-respiratory-diseases [Accessed 1 April 2020.]
Esposito, S., & Principi, N. (2020). Adjunctive therapy to treat neonatal sepsis. Expert review of clinical pharmacology, 13(1), 65–73. https://doi.org/10.1080/17512433.2020.1699790
Finsen, N. (1991). Phototherapy, Edward Arnold, London.
Hamblin M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics, 4(3), 337–361. https://doi.org/10.3934/bio phy.2017.3.337
Hamblin, M. R., Nelson, S. T., & Strahan, J. R. (2018). Photobiomodulation and Cancer: What Is the Truth?. Photomedicine and laser surgery, 36(5), 241–245. https://doi.org/10.1089/pho.2017.4401
Huang, Z., Fu, Z., Huang, W., & Huang, K. (2020). Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. The American journal of emergency medicine, 38(3), 641–647. https://doi.org/10.1016/j.ajem.2019.10.023
Isabella, A., Silva, J., da Silva, T., Rodrigues, M., Horliana, A., Motta, L. J., Bussadori, S. K., Pavani, C. & Silva, D. (2019). Effect of irradiation with intravascular laser on the hemodynamic variables of hypertensive patients: Study protocol for prospective blinded randomized clinical trial. Medicine, 98(14), e15111. https://doi.org/10.1097/MD.00 00000000015111
Karu T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of photochemistry and photobiology. B, Biology, 49(1), 1–17. https://doi.org/10.1016/S1011-1344(98)00219-X
Kim, W. Y. & Hong, S. B. (2016). Sepsis and Acute Respiratory Distress Syndrome: Recent Update. Tuberculosis and respiratory diseases, 79(2), 53–57. https://doi.org/10.4046/trd.2016.79.2.53
Li, J. T., Melton, A. C., Su, G., Hamm, D. E., LaFemina, M., Howard, J., Fang, X., Bhat, S., Huynh, K. M., O'Kane, C. M., Ingram, R. J., Muir, R. R., McAuley, D. F., Matthay, M. A. & Sheppard, D. (2015). Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome. Journal of immunology (Baltimore, Md.: 1950), 195(1), 87–95. https://doi.org/10.4049/jimmunol.1500054
Macedo, D. B., Tim R. C., Macedo, J. B. S. C., Macedo, G. M., Martignago, C. C. S., & Assis, L. (2020). Therapeutic perspective of light for coronavirus treatment. Research, Society and Development, 9(8), e766986320. http://dx.doi.org/10.33448/rsd-v9i8.6320
Mafra de Lima, F., Naves, K. T., Machado, A. H., Albertini, R., Villaverde, A. B. & Aimbire, F. (2009). Lung inflammation and endothelial cell damage are decreased after treatment with phototherapy (PhT) in a model of acute lung injury induced by Escherichia coli lipopolysaccharide in the rat. Cell biology international, 33(12), 1212–1221. https://doi.org/10.1016/j.cellbi.2009.04.025
Mafra de Lima, F., Villaverde, A. B., Salgado, M. A., Castro-Faria-Neto, H. C., Munin, E., Albertini, R., & Aimbire, F. (2010). Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. Journal of photochemistry and photobiology. B, Biology, 101(3), 271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012
Matioli, M. R., Sonobe, H. M., Sato, S., & Stabile, A. M. (2019). The experience of sepsis and the health-related quality of life. Research, Society and Development, 8(11), e328111477. https://doi.org/10.33448/rsd-v8i11.1477
Mikhaylov V. A. (2015). The use of Intravenous Laser Blood Irradiation (ILBI) at 630-640 nm to prevent vascular diseases and to increase life expectancy. Laser therapy, 24(1), 15–26. https://doi.org/10.5978/islsm.15-OR-02
Miranda da Silva, C., Peres Leal, M., Brochetti, R. A., Braga, T., Vitoretti, L. B, Saraiva Câmara, N. O., Damazo, A. S., Ligeiro-de-Oliveira, A. P., Chavantes, M. C. & Lino-Dos-Santos-Franco, A. (2015). Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure. PloS one, 10(11), e0142816. https://doi.org/10.1371/journal.pone.0142816
Moraes, J. P., Tim R. C., & Assis, L. (2020). Considerations about the use of Ozone therapy (O3) in the treatment of Endometriosis. Research, Society and Development, 9(9), e403997616. http://dx.doi.org/10.33448/rsd-v9i9.7616
Moskvin, S. V., Konchugova, T. V. & Khadartsev, A. А. (2017). Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, 94(5), 10–17. https://doi.org/10.1 7116/kurort201794510-17
Oliveira, M. C., Jr, Greiffo, F. R., Rigonato-Oliveira, N. C., Custódio, R. W., Silva, V. R., Damaceno-Rodrigues, N. R., Almeida, F. M., Albertini, R., Lopes-Martins, R. Á., de Oliveira, L. V., de Carvalho, P., Ligeiro de Oliveira, A. P., Leal, E. C., Jr, & Vieira, R. P. (2014). Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. Journal of photochemistry and photobiology. B, Biology, 134, 57–63. https://doi.org/10.1016/j.jphotobiol.2014.03.021
Opal, S M., & Wittebole, X. (2020). Biomarkers of Infection and Sepsis. Critical care clinics, 36(1), 11–22. https://doi.org/10.1016/j.ccc.2019.08.002
Ostronosova N. S. (2006). Terapevticheskii arkhiv, 78(3), 41–44.
Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/hand le/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Rao M. H., Muralidhar, A., & Reddy, A. K. S. (2014) Acute respiratory distress syndrome. J Clin Sci Res 3,114–134
Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., & Moyano, S. (2017). Sepsis: A Review of Advances in Management. Advances in therapy, 34(11), 2393–2411. https://doi.org/10.1007/s12325-017-0622-8
Rigonato-Oliveira, N. C., de Brito, A. A., Vitoretti, L. B., de Cunha Moraes, G., Gonçalves, T., Herculano, K. Z., Alves, C. E., Lino-Dos-Santos-Franco, A., Aimbire, F., Vieira, R. P., & Ligeiro de Oliveira, A. P (2019). Effect of Low-Level Laser Therapy (LLLT) in Pulmonary Inflammation in Asthma Induced by House Dust Mite (HDM): Dosimetry Study. International journal of inflammation, 2019, 3945496. https://doi.org/10.1155/2019/3945496
Rubenfeld, G. D., & Herridge, M. S. (2007). Epidemiology and outcomes of acute lung injury. Chest, 131(2), 554–562. https://doi.org/10.1378/chest.06-1976
Sergio, L., Thomé, A., Trajano, L., Mencalha, A. L., da Fonseca, A. S., & de Paoli, F. (2018). Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 17(7), 975–983. https://doi.org/10.1039/c8pp00109j
Stanski, N. L., & Wong, H. R. (2020). Prognostic and predictive enrichment in sepsis. Nature reviews. Nephrology, 16(1), 20–31. https://doi.org/10.1038/s41581-019-0199-3
Sun, W., Wang, Z. P., Gui, P., Xia, W., Xia, Z., Zhang, X. C., Deng, Q. Z., Xuan, W., Marie, C., Wang, L. L., Wu, Q. P., Wang, T., & Lin, Y. (2014). Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. International immunopharmacology, 23(1), 247–253.
Tuner J., & Hode L. (2002) Laser therapy. Clinical practice and scientific background. BookGra ̈ngesberg, Sweden: Prima Books AB; 2002. ISBN: 91-631-1344-9
Weber, M. H., Fußgänger-May, T. H., & Wolf, T. (2007) The intravenous laser blood irradiation. Introduction of a new therapy. German J Acupunct Relat Tech 12–23.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Emanuelle Paiva de Vasconcelos Dantas; Cintia Cristina Santi Martignago; Carla Roberta Tim; Ricardo João Soares Barros Filho; Tereza Mara Alcântara Neves; Lívia Assis
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.