Fotobiomodulação como coadjuvante no tratamento na lesão pulmonar aguda decorrente da sepse
DOI:
https://doi.org/10.33448/rsd-v9i10.9024Palavras-chave:
Fototerapia; Lasers; Sepse; Lesão pulmonar; Reabilitação.Resumo
A sepse é considerada um grande problema de saúde, sendo a lesão pulmonar aguda (LPA) uma das complicações mais graves do choque séptico. Sabe-se que a LPA é uma doença caracterizada por lesão no epitélio alveolar, infiltrado de células inflamatórias, aumento da permeabilidade da barreira alvéolo – capilar, edema intersticial que ocasionam um desequilíbrio na ventilação e perfusão pulmonar, com alta taxa de morbidade e mortalidade nas unidades de terapia intensiva. O tratamento da LPA possui custo elevado e muitas vezes não é suficientemente eficaz, desta forma, a busca por novas terapias são de extrema importância clínica. A fotobiomodulação (PBM) através de lasers e LEDs tem mostrado ser uma ferramenta promissora e com bons resultados para diversas doenças inflamatórias, incluindo as alterações que acometem o sistema respiratório. Dentro deste contexto, o objetivo deste estudo é proporcionar, através de uma revisão narrativa, uma compreensão das evidências atuais disponíveis sobre a importância da PBM no tratamento dos distúrbios respiratórios e sua possível aplicabilidade na LPA decorrente da sepse. As buscas foram realizadas nas bases de dados bibliográficas do PubMed/MEDLINE, Biblioteca virtual da saúde (BVS), Web of Science e SciELO. As evidências encontradas neste estudo direcionam que a PBM pode ser proposta como um suporte para a terapia médica convencional no tratamento LPA oriundas da sepse, devido ao potencial de prevenir a progressão da lesão do parênquima pulmonar, atenuar o quadro inflamatório, otimizar o processo de reparação e reduzir o tempo de recuperação do paciente com LPA decorrente da sepse.
Referências
Abraham, E., Matthay, M. A., Dinarello, C. A., Vincent, J. L., Cohen, J., Opal, S. M., Glauser, M., Parsons, P., Fisher, C. J., Jr. & Repine, J. E. (2000). Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Critical care medicine, 28(1), 232–235. https://doi.org/10.1097/00003246-200001000-00039
Aimbire F., Santos F. V., Albertini R., Castro-Faria-Neto H. C., Mittmann J. & Pacheco-Soares C. (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol. Apr;8(4):603-5. doi: 10.1016/j.intimp.2007.12.007. Epub 2008 Jan 15. PMID: 18328453.
Aimbire, F., Albertine, R., de Magalhães, R. G., Lopes-Martins, R.A., Castro-Faria-Neto, H. C., Zângaro, R. A., Chavantes, M. C. & Pacheco, M. T. (2005). Effect of LLLT Ga-Al-As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers in medical science, 20(1), 11–20. https://doi.org/10.1007/s10103-005-0339-9
Aimbire, F., Albertini, R., Pacheco, M. T., Castro-Faria-Neto, H. C., Leonardo, P. S., Iversen, V. V., Lopes-Martins, R. A., & Bjordal, J. M. (2006). Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomedicine and laser surgery, 24(1), 33–37. https://doi.org/10.1089/pho.2006.24.33
Aimbire, F., Lopes-Martins, R. A., Albertini, R., Pacheco, M. T., Castro-Faria-Neto, H. C., Martins, P. S. & Bjordal, J. M. (2007). Effect of low-level laser therapy on hemorrhagic lesions induced by immune complex in rat lungs. Photomedicine and laser surgery, 25(2), 112–117. https://doi.org/10.1089/pho.2006.1041
Amirov N. B. (2002). Pokazateli membrannoĭ pronitsaemosti, mikrotsirkuliatsii, funktsii vneshnegio dykhaniia i soderzhanie mikroélementov pri medikamentozno-lazernoĭ terapii pnevmonii [Parameters of membrane permeability, microcirculation, external respiration, and trace element levels in the drug-laser treatment of pneumonia]. Terapevticheskii arkhiv, 74(3), 40–43.
Artigas, A., Bernard, G. R., Carlet, J., Dreyfuss, D., Gattinoni, L., Hudson, L., Lamy, M., Marini, J. J., Matthay, M. A., Pinsky, M. R., Spragg, R. & Suter, P. M. (1998). The American-European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. American journal of respiratory and critical care medicine, 157(4 Pt 1), 1332–1347. https://doi.org/10.1164/ajrccm.157.4.ats2-98
Assis, L., Moretti, A. I., Abrahão, T. B., Cury, V., Souza, H. P., Hamblin, M. R. & Parizotto, N. A. (2012). Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers in surgery and medicine, 44(9), 726–735. https://doi.org/10.1002/lsm.22077
Barreto, M. F., Dellaroza, M. S., Kerbauy, G & Grion, C. M. (2016). Sepsis in a university hospital: a prospective study for the cost analysis of patients' hospitalization. Revista da Escola de Enfermagem da U S P, 50(2), 302–308. https://doi.org/10.1590/S0080-623420160000200017
Bernard, G. R., Artigas, A., Brigham, K. L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J. R., Morris, A., & Spragg, R. (1994). The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American journal of respiratory and critical care medicine, 149(3 Pt 1), 818–824. https://doi.org/10.1164/ajrccm.149.3.7509706
Bjordal, J. M., Lopes-Martins, R. A. B., & Iversen, V. V. (2010) The anti-inflammatory mechanism of low level laser therapy and its relevance for clinical use in physiotherapy. Medicine 2010. 15: 286–293 Corpus ID: 27687471. doi: 10.1179/1743288X10Y.0000000001.
Borges, A. C. do N., Costa, A. L., Bezerra, J. B., Araújo, D. S., Soares, M. A. A., Gonçalves, J. N. de A., Rodrigues, D. T. da S., Oliveira, E. H. S. de, Luz, L. E. da, Silva, T. R., & Silva, L. G. de S. (2020). Epidemiology and pathophysiology of sepsis: an review. Research, Society and Development, 9(2), e187922112. https://doi.org/10.33448/rsd-v9i2.2112
Burduli, N. M., & Aksenova, I. Z. (2007). Klinicheskaia meditsina, 85(9), 58–61.
Chung, H., Dai, T., Sharma, S. K., Huang, Y. Y., Carroll, J. D., & Hamblin, M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 40(2), 516–533. https://doi.org/10.1007/s10439-011-0454-7
Costa, S. G., Barioni, É. D., Ignácio, A., Albuquerque, J., Câmara, N., Pavani, C., Vitoretti, L. B., Damazo, A. S., Farsky, S. & Lino-Dos-Santos-Franco, A. (2017). Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Scientific reports, 7(1), 12670. https://doi.org/10.1038/s41598-017-13117-5
da Cunha Moraes, G., Vitoretti, L. B., de Brito, A. A., Alves, C. E., de Oliveira, N., Dos Santos Dias, A., Matos, Y., Oliveira-Junior, M. C., Oliveira, L., da Palma, R. K., Candeo, L. C., Lino-Dos-Santos-Franco, A., Horliana, A., Gimenes Júnior, J. A., Aimbire, F., Vieira, R. P., & Ligeiro-de-Oliveira, A. P. (2018). Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor. Oxidative medicine and cellular longevity, 2018, 6798238. https://doi.org/10.1155/2018/6798238
da Silva Sergio, L. P., Thomé, A., da Silva Neto Trajano, L. A., Vicentini, S. C., Teixeira, A. F., Mencalha, A. L., de Paoli, F. & de Souza da Fonseca, A. (2019). Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats. Lasers in medical science, 34(1), 157–168. https://doi.org/10.1007/s10103-018-2656-9
da Silva, J., Dos Santos, S. S., de Almeida, P., Marcos, R. L. & Lino-Dos-Santos-Franco, A. (2020). Effect of systemic photobiomodulation in the course of acute lung injury in rats. Lasers in medical science, 10.1007/s10103-020-03119-7. Advance online publication. https://doi.org/10.1007/s10103-020-03119-7
de Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F. & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731.
https://doi.org/10.1016/j.jphotobiol.2019.111731
de Lima, F. M., Albertini, R., Dantas, Y., Maia-Filho, A. L., Santana, C., Castro-Faria-Neto, H. C., França, C., Villaverde, A. B. & Aimbire, F. (2013). Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochemistry and photobiology, 89(1), 179–188. https://doi.org/10.1111/j.1751-1097.2012.01214.x
de Lima, F. M., Moreira, L. M., Villaverde, A. B., Albertini, R., Castro-Faria-Neto, H. C. & Aimbire, F. (2011a). Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers in medical science, 26(3), 389–400. https://doi.org/10.1007/s10103-010-0874-x
de Lima, F. M., Villaverde, A. B., Albertini, R., Corrêa, J. C., Carvalho, R.L., Munin, E., Araújo, T., Silva, J. A. & Aimbire, F. (2011b). Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers in surgery and medicine, 43(5), 410–420. https://doi.org/10.1002/lsm.21053
Derbenev V. A., Mikhailov V. A. & Denisov I. N. (2000). Use of low-level laser therapy (LLLT) in the treatment of some pulmonary diseases: ten-year experience. Proc SPIE 2000;4166:323–5. doi: 10.1117/12.389506.
Erkinovna T. B., & Tulkunovna M. H. (2006) Efficacy of laser therapy in infants with infectious-inflammatory respiratory diseases. АКРОНИМ: European Science Review. ISSN: Печатный: 2310-5577. Available at: https:// cyberleninka.ru/article/n/efficacy-of-laser-therapy-in-infants-with-infec- tious-inflammatory-respiratory-diseases [Accessed 1 April 2020.]
Esposito, S., & Principi, N. (2020). Adjunctive therapy to treat neonatal sepsis. Expert review of clinical pharmacology, 13(1), 65–73. https://doi.org/10.1080/17512433.2020.1699790
Finsen, N. (1991). Phototherapy, Edward Arnold, London.
Hamblin M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics, 4(3), 337–361. https://doi.org/10.3934/bio phy.2017.3.337
Hamblin, M. R., Nelson, S. T., & Strahan, J. R. (2018). Photobiomodulation and Cancer: What Is the Truth?. Photomedicine and laser surgery, 36(5), 241–245. https://doi.org/10.1089/pho.2017.4401
Huang, Z., Fu, Z., Huang, W., & Huang, K. (2020). Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. The American journal of emergency medicine, 38(3), 641–647. https://doi.org/10.1016/j.ajem.2019.10.023
Isabella, A., Silva, J., da Silva, T., Rodrigues, M., Horliana, A., Motta, L. J., Bussadori, S. K., Pavani, C. & Silva, D. (2019). Effect of irradiation with intravascular laser on the hemodynamic variables of hypertensive patients: Study protocol for prospective blinded randomized clinical trial. Medicine, 98(14), e15111. https://doi.org/10.1097/MD.00 00000000015111
Karu T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of photochemistry and photobiology. B, Biology, 49(1), 1–17. https://doi.org/10.1016/S1011-1344(98)00219-X
Kim, W. Y. & Hong, S. B. (2016). Sepsis and Acute Respiratory Distress Syndrome: Recent Update. Tuberculosis and respiratory diseases, 79(2), 53–57. https://doi.org/10.4046/trd.2016.79.2.53
Li, J. T., Melton, A. C., Su, G., Hamm, D. E., LaFemina, M., Howard, J., Fang, X., Bhat, S., Huynh, K. M., O'Kane, C. M., Ingram, R. J., Muir, R. R., McAuley, D. F., Matthay, M. A. & Sheppard, D. (2015). Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome. Journal of immunology (Baltimore, Md.: 1950), 195(1), 87–95. https://doi.org/10.4049/jimmunol.1500054
Macedo, D. B., Tim R. C., Macedo, J. B. S. C., Macedo, G. M., Martignago, C. C. S., & Assis, L. (2020). Therapeutic perspective of light for coronavirus treatment. Research, Society and Development, 9(8), e766986320. http://dx.doi.org/10.33448/rsd-v9i8.6320
Mafra de Lima, F., Naves, K. T., Machado, A. H., Albertini, R., Villaverde, A. B. & Aimbire, F. (2009). Lung inflammation and endothelial cell damage are decreased after treatment with phototherapy (PhT) in a model of acute lung injury induced by Escherichia coli lipopolysaccharide in the rat. Cell biology international, 33(12), 1212–1221. https://doi.org/10.1016/j.cellbi.2009.04.025
Mafra de Lima, F., Villaverde, A. B., Salgado, M. A., Castro-Faria-Neto, H. C., Munin, E., Albertini, R., & Aimbire, F. (2010). Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. Journal of photochemistry and photobiology. B, Biology, 101(3), 271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012
Matioli, M. R., Sonobe, H. M., Sato, S., & Stabile, A. M. (2019). The experience of sepsis and the health-related quality of life. Research, Society and Development, 8(11), e328111477. https://doi.org/10.33448/rsd-v8i11.1477
Mikhaylov V. A. (2015). The use of Intravenous Laser Blood Irradiation (ILBI) at 630-640 nm to prevent vascular diseases and to increase life expectancy. Laser therapy, 24(1), 15–26. https://doi.org/10.5978/islsm.15-OR-02
Miranda da Silva, C., Peres Leal, M., Brochetti, R. A., Braga, T., Vitoretti, L. B, Saraiva Câmara, N. O., Damazo, A. S., Ligeiro-de-Oliveira, A. P., Chavantes, M. C. & Lino-Dos-Santos-Franco, A. (2015). Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure. PloS one, 10(11), e0142816. https://doi.org/10.1371/journal.pone.0142816
Moraes, J. P., Tim R. C., & Assis, L. (2020). Considerations about the use of Ozone therapy (O3) in the treatment of Endometriosis. Research, Society and Development, 9(9), e403997616. http://dx.doi.org/10.33448/rsd-v9i9.7616
Moskvin, S. V., Konchugova, T. V. & Khadartsev, A. А. (2017). Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, 94(5), 10–17. https://doi.org/10.1 7116/kurort201794510-17
Oliveira, M. C., Jr, Greiffo, F. R., Rigonato-Oliveira, N. C., Custódio, R. W., Silva, V. R., Damaceno-Rodrigues, N. R., Almeida, F. M., Albertini, R., Lopes-Martins, R. Á., de Oliveira, L. V., de Carvalho, P., Ligeiro de Oliveira, A. P., Leal, E. C., Jr, & Vieira, R. P. (2014). Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. Journal of photochemistry and photobiology. B, Biology, 134, 57–63. https://doi.org/10.1016/j.jphotobiol.2014.03.021
Opal, S M., & Wittebole, X. (2020). Biomarkers of Infection and Sepsis. Critical care clinics, 36(1), 11–22. https://doi.org/10.1016/j.ccc.2019.08.002
Ostronosova N. S. (2006). Terapevticheskii arkhiv, 78(3), 41–44.
Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/hand le/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Rao M. H., Muralidhar, A., & Reddy, A. K. S. (2014) Acute respiratory distress syndrome. J Clin Sci Res 3,114–134
Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., & Moyano, S. (2017). Sepsis: A Review of Advances in Management. Advances in therapy, 34(11), 2393–2411. https://doi.org/10.1007/s12325-017-0622-8
Rigonato-Oliveira, N. C., de Brito, A. A., Vitoretti, L. B., de Cunha Moraes, G., Gonçalves, T., Herculano, K. Z., Alves, C. E., Lino-Dos-Santos-Franco, A., Aimbire, F., Vieira, R. P., & Ligeiro de Oliveira, A. P (2019). Effect of Low-Level Laser Therapy (LLLT) in Pulmonary Inflammation in Asthma Induced by House Dust Mite (HDM): Dosimetry Study. International journal of inflammation, 2019, 3945496. https://doi.org/10.1155/2019/3945496
Rubenfeld, G. D., & Herridge, M. S. (2007). Epidemiology and outcomes of acute lung injury. Chest, 131(2), 554–562. https://doi.org/10.1378/chest.06-1976
Sergio, L., Thomé, A., Trajano, L., Mencalha, A. L., da Fonseca, A. S., & de Paoli, F. (2018). Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 17(7), 975–983. https://doi.org/10.1039/c8pp00109j
Stanski, N. L., & Wong, H. R. (2020). Prognostic and predictive enrichment in sepsis. Nature reviews. Nephrology, 16(1), 20–31. https://doi.org/10.1038/s41581-019-0199-3
Sun, W., Wang, Z. P., Gui, P., Xia, W., Xia, Z., Zhang, X. C., Deng, Q. Z., Xuan, W., Marie, C., Wang, L. L., Wu, Q. P., Wang, T., & Lin, Y. (2014). Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. International immunopharmacology, 23(1), 247–253.
Tuner J., & Hode L. (2002) Laser therapy. Clinical practice and scientific background. BookGra ̈ngesberg, Sweden: Prima Books AB; 2002. ISBN: 91-631-1344-9
Weber, M. H., Fußgänger-May, T. H., & Wolf, T. (2007) The intravenous laser blood irradiation. Introduction of a new therapy. German J Acupunct Relat Tech 12–23.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Emanuelle Paiva de Vasconcelos Dantas; Cintia Cristina Santi Martignago; Carla Roberta Tim; Ricardo João Soares Barros Filho; Tereza Mara Alcântara Neves; Lívia Assis
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.