El ranelato de estroncio promueve el aumento de la formación ósea periimplantaria en ratas ovariectomizadas.

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.9092

Palabras clave:

Osteoporosis; Estroncio; Osseointegracion; Hueso.

Resumen

Este estudio tiene como objetivo evaluar el efecto sistémico del ranelato de estroncio (SR) en el tejido óseo periimplantario. Treinta y seis ratas adultas fueron divididas en tres grupos experimentales: SHAM (SHAM), ovariectomizadas (OVX) y ovariectomizadas tratadas con ranelato de estroncio (OVX-Sr). El ranelato de estroncio (625mg/kg) se administró por vía oral diariamente. Los implantes se instalaron en la tibia. La eutanasia se produjo 42 y 60 días después de la instalación del implante, y se realizaron análisis biomecánicos (torsión inversa); PCR-RT; histológicos; inmunohistoquímicos; microscopía confocal e histométricos. Los datos cuantitativos se sometieron a pruebas estadísticas con un nivel de significación establecido en p<0,05. Se observó un aumento significativo del torque inverso del implante en OVX-Sr en comparación con OVX. El análisis por PCR mostró un aumento en la expresión genética de las proteínas responsables de la formación de huesos en OVX-SR. En el análisis histológico, SHAM y OVX-Sr mostraron un mayor grado de maduración del tejido óseo periimplantario. OVX-Sr mostró una marca de inmunidad más alta para las proteínas ALP y OPN en comparación con OVX. En la microscopía confocal, OVX-Sr hubo una buena neoformación ósea mostrada por la incorporación del fluorocromo rojo de Alizarin. El análisis histórico, el contacto con el implante óseo (BIC) y el área ósea neoformada (NBA) mostraron diferencias estadísticas entre todos los grupos, y Ran-Sr mostró el BIC más alto. Así, el ranelato de estroncio mejora la osteointegración y la calidad del tejido óseo neoformado alrededor de los implantes en ratas con deficiencia de estrógeno.

Citas

Abrahamsen, B., Grove, E. L., & Vestergaard, P. (2014). Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate. Osteoporosis international, 25(2), 757–762. https://doi.org/10.1007/s00198-013-2469-4

Bain, S. D., Jerome, C., Shen, V., Dupin-Roger, I., & Ammann, P. (2009). Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporosis international, 20(8), 1417–1428. https://doi.org/10.1007/s00198-008-0815-8.

Beattie, J. R., Sophocleous, A., Caraher, M. C., O'Driscoll, O., Cummins, N. M., Bell, S., Towler, M., Rahimnejad Yazdi, A., Ralston, S. H., & Idris, A. I. (2019). Raman spectroscopy as a predictive tool for monitoring osteoporosis therapy in a rat model of postmenopausal osteoporosis. Journal of materials science. Materials in medicine, 30(2), 25. https://doi.org/10.1007/s10856-019-6226-x

Blake, G. M., & Fogelman, I. (2006). Theoretical model for the interpretation of BMD scans in patients stopping strontium ranelate treatment. Journal of bone and mineral research, 21(9), 1417–1424. https://doi.org/10.1359/jbmr.060616

Brennan, T. C., Rybchyn, M. S., Green, W., Atwa, S., Conigrave, A. D., & Mason, R. S. (2009). Osteoblasts play key roles in the mechanisms of action of strontium ranelate. British journal of pharmacology, 157(7), 1291–1300. https://doi.org/10.1111/j.1476-5381.2009.00305.x

Bonnelye, E., Chabadel, A., Saltel, F., & Jurdic, P. (2008). Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone, 42(1), 129–138. https://doi.org/10.1016/j.bone.2007.08.043

Bouxsein, M.L., Boyd, S.K., Christiansen, B.A., Guldberg, R.E., Jepsen, K.J. & Müller, R. (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 25(7):1468-86. https://doi.org/10.1002/jbmr.141.

Cianferotti, L., D'Asta, F., & Brandi, M. L. (2013). A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Therapeutic advances in musculoskeletal disease, 5(3), 127–139. https://doi.org/10.1177/1759720X13483187

Cooper, C., Fox, K. M., & Borer, J. S. (2014). Ischaemic cardiac events and use of strontium ranelate in postmenopausal osteoporosis: a nested case-control study in the CPRD. Osteoporosis international, 25(2), 737–745. https://doi.org/10.1007/s00198-013-2582-4

Compston, J. E., McClung, M. R., & Leslie, W. D. (2019). Osteoporosis. Lancet (London, England), 393(10169), 364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

Confavreux, C. B., Canoui-Poitrine, F., Schott, A. M., Ambrosi, V., Tainturier, V., & Chapurlat, R. D. (2012). Persistence at 1 year of oral antiosteoporotic drugs: a prospective study in a comprehensive health insurance database. European journal of endocrinology, 166(4), 735–741. https://doi.org/10.1530/EJE-11-0959

Cosman, F., de Beur, S. J., LeBoff, M. S., Lewiecki, E. M., Tanner, B., Randall, S., Lindsay, R., & National Osteoporosis Foundation (2014). Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporosis international, 25(10), 2359–2381. https://doi.org/10.1007/s00198-014-2794-2

Dempster, D.W., Compston, J.E., Drezner, M.K., Glorieux, F.H., Kanis, J.A. & Malluche, H. (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 28(1):2-17.

European Medicines Agency PSUR assessment report: Strontium ranelate. 2013. [Accessed June, 08, 2014]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Assessment_Report_-_Variation/human/000560/WC500147168.pdf

Faverani, L. P., Polo, T., Ramalho-Ferreira, G., Momesso, G., Hassumi, J. S., Rossi, A. C., Freire, A. R., Prado, F. B., Luvizuto, E. R., Gruber, R., & Okamoto, R. (2018). Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clinical oral investigations, 22(1), 255–265. https://doi.org/10.1007/s00784-017-2106-2

Glösel, B., Kuchler, U., Watzek, G., & Gruber, R. (2010). Review of dental implant rat research models simulating osteoporosis or diabetes. The International journal of oral & maxillofacial implants, 25(3), 516–524.

Grynpas, M. D., & Marie, P. J. (1990). Effects of low doses of strontium on bone quality and quantity in rats. Bone, 11(5), 313–319. https://doi.org/10.1016/8756-3282(90)90086-e

Hamdy N. A. (2009). Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology (Oxford, England), 48 Suppl 4, iv9–iv13. https://doi.org/10.1093/rheumatology/kep274

Hurtel-Lemaire, A. S., Mentaverri, R., Caudrillier, A., Cournarie, F., Wattel, A., Kamel, S., Terwilliger, E. F., Brown, E. M., & Brazier, M. (2009). The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. The Journal of biological chemistry, 284(1), 575–584. https://doi.org/10.1074/jbc.M801668200.

International Osteoporosis Foundation [Accessed June, 08, 2014]. Available from: https://www.iofbonehealth.org/

Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. (2010) Improving bioscience reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 29;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.

Maïmoun, L., Brennan, T. C., Badoud, I., Dubois-Ferriere, V., Rizzoli, R., & Ammann, P. (2010). Strontium ranelate improves implant osseointegration. Bone, 46(5), 1436–1441. https://doi.org/10.1016/j.bone.2010.01.379

Manrique, N., Pereira, C.C., Luvizuto, E.R., Sánchez, M. del P., Okamoto, T., Okamoto, R., Sumida, D.H. & Antoniali, C. (2015) Hypertension modifies OPG, RANK, and RANKL expression. during the dental socket bone healing process in spontaneously hypertensive rats. Clin Oral Investig. 19(6):1319-27. https://doi.org/10.1007/s00784-014-1369-0.

Marie, P. J., Ammann, P., Boivin, G., & Rey, C. (2001). Mechanisms of action and therapeutic potential of strontium in bone. Calcified tissue international, 69(3), 121–129. https://doi.org/10.1007/s002230010055

Marie P. J. (2005). Strontium as therapy for osteoporosis. Current opinion in pharmacology, 5(6), 633–636. https://doi.org/10.1016/j.coph.2005.05.005

Martín-Merino, E., Petersen, I., Hawley, S., Álvarez-Gutierrez, A., Khalid, S., Llorente-Garcia, A., Delmestri, A., Javaid, M. K., Van Staa, T. P., Judge, A., Cooper, C., & Prieto-Alhambra, D. (2018). Risk of venous thromboembolism among users of different anti-osteoporosis drugs: a population-based cohort analysis including over 200,000 participants from Spain and the UK. Osteoporosis international, 29(2), 467–478. https://doi.org/10.1007/s00198-017-4308-5

Meunier, P. J., Roux, C., Seeman, E., Ortolani, S., Badurski, J. E., Spector, T. D., Cannata, J., Balogh, A., Lemmel, E. M., Pors-Nielsen, S., Rizzoli, R., Genant, H. K., & Reginster, J. Y. (2004). The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. The New England journal of medicine, 350(5), 459–468. https://doi.org/10.1056/NEJMoa022436.

Palin, L.P., Polo, T.O.B., Batista, F.R.S., Gomes-Ferreira, P.H.S., Garcia-Junior, I.R., Rossi, A.C., Freire, A., Faverani, L.P., Sumida, D.H. & Okamoto, R. (2018) Daily melatonin administration improves osseointegration in pinealectomized rats. J Appl Oral Sci. 10;26: e20170470. https://doi.org/10.1590/1678-7757-2017-0470.

Pedrosa, W.F. Jr, Okamoto, R., Faria, P.E., Arnez, M.F., Xavier, S.P. & Salata, L.A. (2009) Immunohistochemical, tomographic and histological study on onlay bone graft remodeling. Part II: calvarial bone. Clin Oral Implants Res. 20(11):1254-64. https://doi.org/10.1111/j.1600-0501.2009.01747.x.

Pilmane, M., Salma-Ancane, K., Loca, D., Locs, J., & Berzina-Cimdina, L. (2017). Strontium and strontium ranelate: Historical review of some of their functions. Materials science & engineering. C, Materials for biological applications, 78, 1222–1230. https://doi.org/10.1016/j.msec.2017.05.042

Ramalho-Ferreira, G., Faverani, L. P., Prado, F. B., Garcia, I. R., Jr, & Okamoto, R. (2015). Raloxifene enhances peri-implant bone healing in osteoporotic rats. International journal of oral and maxillofacial surgery, 44(6), 798–805. https://doi.org/10.1016/j.ijom.2015.02.018

Ramalho-Ferreira, G., Faverani, L. P., Momesso, G., Luvizuto, E. R., de Oliveira Puttini, I., & Okamoto, R. (2017). Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in ovariectomized rats. Clinical oral investigations, 21(5), 1485–1494. https://doi.org/10.1007/s00784-016-1909-x

Reginster, J. Y., Sarlet, N., Lejeune, E., & Leonori, L. (2005). Strontium ranelate: a new treatment for postmenopausal osteoporosis with a dual mode of action. Current osteoporosis reports, 3(1), 30–34. https://doi.org/10.1007/s11914-005-0025-7

Reginster, J. Y., Brandi, M. L., Cannata-Andía, J., Cooper, C., Cortet, B., Feron, J. M., Genant, H., Palacios, S., Ringe, J. D., & Rizzoli, R. (2015). The position of strontium ranelate in today's management of osteoporosis. Osteoporosis international, 26(6), 1667–1671. https://doi.org/10.1007/s00198-015-3109-y

Scardueli, C. R., Bizelli-Silveira, C., Marcantonio, R., Marcantonio, E., Jr, Stavropoulos, A., & Spin-Neto, R. (2018). Systemic administration of strontium ranelate to enhance the osseointegration of implants: systematic review of animal studies. International journal of implant dentistry, 4(1), 21. https://doi.org/10.1186/s40729-018-0132-8

Stevenson, M., Davis, S., Lloyd-Jones, M., & Beverley, C. (2007). The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women. Health technology assessment (Winchester, England), 11(4), 1–134. https://doi.org/10.3310/hta11040

Tarantino, U., Iolascon, G., Cianferotti, L., Masi, L., Marcucci, G., Giusti, F., Marini, F., Parri, S., Feola, M., Rao, C., Piccirilli, E., Zanetti, E. B., Cittadini, N., Alvaro, R., Moretti, A., Calafiore, D., Toro, G., Gimigliano, F., Resmini, G., & Brandi, M. L. (2017). Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. Journal of orthopaedics and traumatology, 18(Suppl 1), 3–36. https://doi.org/10.1007/s10195-017-0474-7

Yogui, F. C., Momesso, G., Faverani, L. P., Polo, T., Ramalho-Ferreira, G., Hassumi, J. S., Rossi, A. C., Freire, A. R., Prado, F. B., & Okamoto, R. (2018). A SERM increasing the expression of the osteoblastogenesis and mineralization-related proteins and improving quality of bone tissue in an experimental model of osteoporosis. Journal of applied oral science : revista FOB, 26, e20170329. https://doi.org/10.1590/1678-7757-2017-0329

Yu, J., Tang, J., Li, Z., Sajjan, S., O'Regan, C., Modi, A., & Sazonov, V. (2015). History of cardiovascular events and cardiovascular risk factors among patients initiating strontium ranelate for treatment of osteoporosis. International journal of women's health, 7, 913–918. https://doi.org/10.2147/IJWH.S88627

Zacchetti, G., Dayer, R., Rizzoli, R., & Ammann, P. (2014). Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. BioMed research international, 2014, 549785. https://doi.org/10.1155/2014/549785

Descargas

Publicado

18/10/2020

Cómo citar

YOGUI, F. C.; ERVOLINO-SILVA, A. C.; PITOL-PALIN, L.; COLÉTE, J. Z.; HASSUMI, J. S.; MONTEIRO, N. G.; BATISTA, F. R. de S. .; GOMES-FERREIRA, P. H. S.; OKAMOTO, R. El ranelato de estroncio promueve el aumento de la formación ósea periimplantaria en ratas ovariectomizadas. Research, Society and Development, [S. l.], v. 9, n. 10, p. e7539109092, 2020. DOI: 10.33448/rsd-v9i10.9092. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9092. Acesso em: 31 jul. 2024.

Número

Sección

Ciencias de la salud