Extractos de pitanga y grumixama: actividad antioxidante, antimicrobiana y incorporación en películas celulósicas contra Staphylococcus aureus

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9362

Palabras clave:

Actividad antimicrobiana; Compuestos fenólicos; Frutas brasileñas; Microorganismos alimentarios; S. aureus.

Resumen

Existe un gran interés en desarrollar alternativas para mejorar la seguridad alimentaria, ya que las enfermedades transmitidas por los alimentos son un importante problema de salud pública a nivel mundial. Los extractos de plantas tienen el potencial de inhibir el crecimiento microbiano debido a la acción de metabolitos secundarios, como los compuestos fenólicos. Este estudio evaluó las actividades antioxidantes y antimicrobianas de compuestos fenólicos extraídos de frutos de grumixama (Eugenia brasiliensis) y pitanga (Eugenia uniflora) y el potencial antimicrobiano del extracto de grumixama tras su incorporación a películas celulósicas. Ambas frutas eran ricas en compuestos fenólicos totales y sus extractos mostraron actividad antioxidante. Los extractos crudos y fenólicos de grumixama mostraron mayor actividad que los extractos de pitanga. Todos los extractos inhibieron el crecimiento de Staphylococcus aureus. Después de su incorporación a películas celulósicas, el extracto crudo de grumixama permaneció activo, reduciendo la población de S. aureus en 4 ciclos logarítmicos. Las películas celulósicas incorporadas con extracto de grumixama se mantuvieron estables tras siete días de almacenamiento en refrigeración a 7ºC; pero perdieron parcialmente la actividad antimicrobiana cuando se expusieron a la radiación UV. Estas películas celulósicas que contienen compuestos fenólicos podrían usarse como un método de conservación complementario de alimentos que son propensos a contaminarse con S. aureus.

Citas

Abe, L. T., Lajolo, F. M., & Genovese, M. I. (2012). Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg). Journal of the Science of Food and Agriculture, 92 (8), 1679-1687. doi: 10.1002/jsfa.5531

Angelo, P. M. & Jorge, N. (2007). Phenolic compounds in foods: a brief review. Revista do Instituto Adolfo Lutz (Impresso), 66 (1), 01-09

Argudín, M. Á., Mendoza, M. C. & Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2 (7), 1751-1773. doi: 10.3390/toxins2071751

Bagetti, M., Facco, E. M. P., Piccolo, J., Hirsch, G. E., Rodriguez-Amaya, D., Kobori, C. N., Vizzotto, M. & Emanuelli, T. (2011). Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Food Science and Technology, 31 (1), 147-154. doi: 10.1590/S0101-20612011000100021

Bawer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496. doi: 10.1093/ajcp/45.4_ts.493.

Borges, K. C., Bezerra, M. D. F., Rocha, M. P., Silva, E. S. D., Fujita, A., Genovese, M. I. & Correia, R. T. P. (2016). Fresh and spray dried pitanga (Eugenia uniflora) and jambolan (Syzygium cumini) pulps are natural sources of bioactive compounds with functional attributes. Journal of Probiotics and Health, 4 (2), 1-8. doi: 10.4172/2329-8901.1000145

Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., & Bordes, C. (2019). Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Frontiers in Microbiology, 10, 829. doi: 10.3389/fmicb.2019.00829

Brand-Williams, W., Cuvelier, M.E. & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28 (1), 25-30. doi: 10.1016/S0023-6438(95)80008-5

Chen, Y., Liu, T., Wang, K., Hou, C., Cai, S., Huang, Y., Du, Z., Huang, H., Kong, J. & Chen, Y. (2016). Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One, 11 (4), e0153468. doi: 10.1371/journal.pone.0153468

Chuah, P. N., Nyanasegaram, D., Yu, K. X., Razik, R. M., Al-Dhalli, S., Kue, C. S., Shaari, K. & Ng, C. H. (2020). Comparative conventional extraction methods of ethanolic extracts of Clinacanthus nutans leaves on antioxidant activity and toxicity. British Food Journal, 122 (10), 3139-3149. doi: 10.1108/bfj-02-2020-0085

Cunha, L. R., Soares, N. D. F. F., Assis, F. C. C., Pereira, A. F. & Silva, C. B. (2007). Development and evaluation of active packaging incorporated with lactase. Food Science and Technology, 27 (1), 23-26. doi: 10.1590/S0101-20612007000500004

Cushnie, T. T. & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38 (2), 99-107. doi: 10.1016/j.ijantimicag.2011.02.014

Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Wang, J., Ding, Y., Zhang, S., Yang, X., Lei, T., Xue, L. & Wu, H. (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in China. Frontiers in Microbiology, 10, 641. doi: 10.3389/fmicb.2019.00641

Dannenberg, G. S., Funck, G. D., Cruxen, C. E. S., Marques, J. L., Silva, W. P. & Fiorentini, A.M. (2017). Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: Potential for application as active packaging for sliced cheese. LWT - Food Science and Technology, 81, 314-318. doi: 10.1016/j.lwt.2017.04.002

Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedure in multiple comparisons. Ciência e Agrotecnologia, 38 (2), 109-112. doi: 10.1590/S1413-70542014000200001

Finger, J. A. F. F., Baroni, W. S. G. V., Maffei, D. F., Bastos, D. H. M. & Pinto, U. M. (2019). Overview of foodborne disease outbreaks in Brazil from 2000 to 2018. Foods, 8 (10), 434. doi: 10.3390/foods8100434

Freitas, M. L. F., Dutra, M. B. L. & Bolini, H. M. A. (2016). Sensory profile and acceptability for pitanga (Eugenia uniflora L.) nectar with different sweeteners. Food and Science Technology International, 22 (8), 720-731. doi: 10.1177/1082013215607077

Garzón, G. A., Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R. & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon, 6 (5), e03845. doi: 10.1016/j.heliyon.2020.e03845

Gonçalves, A. L., Alves Filho, A. & Menezes, H. (2005). Comparative study on antimicrobial activity of some native tree extracts. Arquivos do Instituto Biológico, 72 (3), 353-358. doi: 10.3109/13880209.2011.596205

Han, J. W., Ruiz‐Garcia, L., Qian, J. P. & Yang, X. T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17 (4), 860-877. doi: 10.1111/1541-4337.12343

Huang, D., Ou, B. & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53 (6), 1841-1856. doi: 10.1021/jf030723c

Infante, J., Rosalen, P. L., Lazarini, J. G., Franchin, M. & Alencar, S. M. (2016). Antioxidant and anti-inflammatory activities of unexplored Brazilian native fruits. PloS One, 11 (4), e0152974. doi: 10.1371/journal.pone.0152974

Kim, D. O., Jeong, S. W. & Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81 (3), 321-326. doi: 10.1016/S0308-8146(02)00423-5

Lima, V. L. A., Mélo, E. A. & Lima, D. E. S. (2005). The effects of light and freezing temperature upon the stability of purple surinam cherry’s anthocyanin. Food Science and Technology, 25 (1), 92-94. doi: 10.1590/S0101-20612005000100015

Machado, V., Pardo, L., Cuello, D., Giudice, G., Luna, P. C., Varela, G., Camou, T. & Schelotto, F. (2020). Presence of genes encoding enterotoxins in Staphylococcus aureus isolates recovered from food, food establishment surfaces and cases of foodborne diseases. Revista do Instituto de Medicina Tropical de São Paulo, 62, e5. doi: 10.1590/s1678-9946202062005

Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C. Y. O. & Lima, G. P. P. (2017). Phenolic compounds: Functional properties, impact of processing and bioavailability. In: Soto-Hernandez, M., Palma-Tenango, M. & Garcia-Mateos. Phenolic Compounds - Biological Activity. Rijeka, Croatia: InTech.

Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M. P. & Fernández-García, M. (2019). Bio-based polymers with antimicrobial properties towards sustainable development. Materials, 12 (4), 641. doi: 10.3390/ma12040641

Oliveira, L. M. & Oliveira, P. A. P. L. V. (2004). Review: main antimicrobial agents used in plastic packaging. Brazilian Journal of Food Technology, 7 (172), 161-165. Retrieved from

Pessini, G. L., Holetz, F. B., Sanches, N. R., Cortez, D. A. G., Dias Filho, B. P. & Nakamura, C. V. (2003). Avaliação da atividade antibacteriana e antifúngica de extratos de plantas utilizados na medicina popular. Revista Brasileira de Farmacognosia, 13, 21-24. doi: 10.1590/S0102-695X2003000300009

Quecán, B. X. V., Rivera, M. L. C., Hassimotto, N. M. A., Almeida, F. A. & Pinto, U. M. (2019). Effect of quercetin rich onion extracts on bacterial quorum sensing. Frontiers in Microbiology, 10, 867. doi: 10.3389/fmicb.2019.00867

Rais, C., Driouch, A., Slimani, C., Bessi, A., Balouiri, M., El Ghadraoui, L., Lazraq, A. & Figuigui, J. A. (2019). Antimicrobial and antioxidant activity of pulp extracts from three populations of Ziziphus lotus L.. Nutrition & Food Science, 49 (6), 1014-1028. doi: 10.1108/NFS-08-2018-0232

Restrepo, E. A., Rojas, J. D., García, O. R., Sánchez, L. T., Pinzón, M. I. & Villa, C. C. (2018). Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Science and Technology International, 24 (8), 705-712. doi: 10.1177/1082013218792133

Rodrigues, A. C., Zola, F. G., Oliveira, B. D. A., Sacramento, N. T. B., Silva, E. R., Bertoldi, M. C., Taylor, J. G. & Pinto, U. M. (2016). Quorum quenching and microbial control through phenolic extract of Eugenia uniflora fruits. Journal of Food Science, 81 (10), 2538-2544. doi: 10.1111/1750-3841.13431

Salawu, S. O., Ogundare, A. O., Ola-Salawu, B. B. & Akindahunsi, A. A. (2011). Antimicrobial activities of phenolic containing extracts of some tropical vegetables. African Journal of Pharmacy and Pharmacology, 5 (4), 486-492. doi: 10.5897/AJPP10.317

Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L. & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods, 5 (21), 5990-5999. doi: 10.1039/c3ay41125g

Santos, C. A., Almeida, F. A., Quecán, B. X. V., Pereira, P. A. P., Gandra, K. M. B., Cunha, L. R. & Pinto, U. M. (2020). Bioactive properties of Syzygium cumini (L.) skeels pulp and seed phenolic extracts. Frontiers in Microbiology, 11, 990. doi: 10.3389/fmicb.2020.00990

Silva, N. C. C., Barbosa, L., Seito, L. N. & Fernandes Junior, A. (2012). Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research, 26 (16), 1510-1514. doi: 10.1080/14786419.2011.564582

Silva, N. A. D, Rodrigues, E., Mercadante, A. Z. & Rosso, V. V. (2014). Phenolic compounds and carotenoids from four fruits native from the Brazilian Atlantic forest. Journal of Agricultural and Food Chemistry, 62 (22), 5072-5084. doi: 10.1021/jf501211p

Silva, L. N., Da Hora, G. C. A., Soares, T. A., Bojer, M. S., Ingmer, H., Macedo, A. J. & Trentin, D. S. (2017). Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Scientific Reports, 7 (1), 1-16. doi: 10.1038/s41598-017-02712-1

Silveira, M. F. A, Soares, N. F. F, Geraldine, R. M., Andrade, N. J. & Gonçalves, M. P. J. (2007). Antimicrobial efficiency and sorbic acid migration from active films into pastry dough. Packaging Technology and Science, 20 (4), 287-292. doi: 10.1002/pts.757

Soares, N. F. F. & Hotchkiss, J. H. (1998). Bitterness reduction in grapefruit juice through active packaging. Packaging Technology and Science, 11 (1), 9-18. doi: doi.org/10.1002/(SICI)1099-1522(199802)11:1<9::AID-PTS413>3.0.CO;2-D

Tayyarcan, E. K., Soykut, E. A., Yilmaz, O. M., Boyaci, I. H., Khaaladi, M. & Fattouch, S. (2019). Investigation of different interactions between Staphylococcus aureus phages and pomegranate peel, grape seed, and black cumin extracts. Journal of Food Safety, 39 (5), e12679. doi: 10.1111/jfs.12679

Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2 (12), 1231-1246. doi: 10.3390/nu2121231

Waterhouse, A.L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6 (1) pp. 1-8. doi: 10.1002/0471142913.fai0101s06

WHO - World Health Organization. (2020). Food Safety. Retrieved October, 2020, from https://www.who.int/news-room/fact-sheets/detail/food-safety

Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Lei, T., Chen, M., Ding, Y. & Xue, L. (2018). Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Frontiers in Microbiology, 9, 1263. doi: 10.3389/fmicb.2018.01263

Zola, F. G., Rodrigues, A. C., Oliveira, B. D. Á., Sacramento, N. T. B., Taylor, J. G., Pinto, U. M. & Bertoldi, M. C. (2019). Mineral and centesimal contents, antioxidant activity and antimicrobial action of phenolic compounds from Eugenia brasiliensis Lam. Pulp. Food Science and Technology, 39 (2), 378-385. doi: 10.1590/fst.18518

Descargas

Publicado

08/11/2020

Cómo citar

CARVALHO , F. M. de; MARTINS, J. T. A.; LIMA, E. M. F.; SANTOS, H. V.; PEREIRA, P. A. P. .; PINTO, U. M.; CUNHA, L. R. da. Extractos de pitanga y grumixama: actividad antioxidante, antimicrobiana y incorporación en películas celulósicas contra Staphylococcus aureus. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1759119362, 2020. DOI: 10.33448/rsd-v9i11.9362. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9362. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas