Extractos de pitanga y grumixama: actividad antioxidante, antimicrobiana y incorporación en películas celulósicas contra Staphylococcus aureus
DOI:
https://doi.org/10.33448/rsd-v9i11.9362Palabras clave:
Actividad antimicrobiana; Compuestos fenólicos; Frutas brasileñas; Microorganismos alimentarios; S. aureus.Resumen
Existe un gran interés en desarrollar alternativas para mejorar la seguridad alimentaria, ya que las enfermedades transmitidas por los alimentos son un importante problema de salud pública a nivel mundial. Los extractos de plantas tienen el potencial de inhibir el crecimiento microbiano debido a la acción de metabolitos secundarios, como los compuestos fenólicos. Este estudio evaluó las actividades antioxidantes y antimicrobianas de compuestos fenólicos extraídos de frutos de grumixama (Eugenia brasiliensis) y pitanga (Eugenia uniflora) y el potencial antimicrobiano del extracto de grumixama tras su incorporación a películas celulósicas. Ambas frutas eran ricas en compuestos fenólicos totales y sus extractos mostraron actividad antioxidante. Los extractos crudos y fenólicos de grumixama mostraron mayor actividad que los extractos de pitanga. Todos los extractos inhibieron el crecimiento de Staphylococcus aureus. Después de su incorporación a películas celulósicas, el extracto crudo de grumixama permaneció activo, reduciendo la población de S. aureus en 4 ciclos logarítmicos. Las películas celulósicas incorporadas con extracto de grumixama se mantuvieron estables tras siete días de almacenamiento en refrigeración a 7ºC; pero perdieron parcialmente la actividad antimicrobiana cuando se expusieron a la radiación UV. Estas películas celulósicas que contienen compuestos fenólicos podrían usarse como un método de conservación complementario de alimentos que son propensos a contaminarse con S. aureus.
Citas
Abe, L. T., Lajolo, F. M., & Genovese, M. I. (2012). Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg). Journal of the Science of Food and Agriculture, 92 (8), 1679-1687. doi: 10.1002/jsfa.5531
Angelo, P. M. & Jorge, N. (2007). Phenolic compounds in foods: a brief review. Revista do Instituto Adolfo Lutz (Impresso), 66 (1), 01-09
Argudín, M. Á., Mendoza, M. C. & Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2 (7), 1751-1773. doi: 10.3390/toxins2071751
Bagetti, M., Facco, E. M. P., Piccolo, J., Hirsch, G. E., Rodriguez-Amaya, D., Kobori, C. N., Vizzotto, M. & Emanuelli, T. (2011). Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Food Science and Technology, 31 (1), 147-154. doi: 10.1590/S0101-20612011000100021
Bawer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496. doi: 10.1093/ajcp/45.4_ts.493.
Borges, K. C., Bezerra, M. D. F., Rocha, M. P., Silva, E. S. D., Fujita, A., Genovese, M. I. & Correia, R. T. P. (2016). Fresh and spray dried pitanga (Eugenia uniflora) and jambolan (Syzygium cumini) pulps are natural sources of bioactive compounds with functional attributes. Journal of Probiotics and Health, 4 (2), 1-8. doi: 10.4172/2329-8901.1000145
Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., & Bordes, C. (2019). Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Frontiers in Microbiology, 10, 829. doi: 10.3389/fmicb.2019.00829
Brand-Williams, W., Cuvelier, M.E. & Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28 (1), 25-30. doi: 10.1016/S0023-6438(95)80008-5
Chen, Y., Liu, T., Wang, K., Hou, C., Cai, S., Huang, Y., Du, Z., Huang, H., Kong, J. & Chen, Y. (2016). Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One, 11 (4), e0153468. doi: 10.1371/journal.pone.0153468
Chuah, P. N., Nyanasegaram, D., Yu, K. X., Razik, R. M., Al-Dhalli, S., Kue, C. S., Shaari, K. & Ng, C. H. (2020). Comparative conventional extraction methods of ethanolic extracts of Clinacanthus nutans leaves on antioxidant activity and toxicity. British Food Journal, 122 (10), 3139-3149. doi: 10.1108/bfj-02-2020-0085
Cunha, L. R., Soares, N. D. F. F., Assis, F. C. C., Pereira, A. F. & Silva, C. B. (2007). Development and evaluation of active packaging incorporated with lactase. Food Science and Technology, 27 (1), 23-26. doi: 10.1590/S0101-20612007000500004
Cushnie, T. T. & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38 (2), 99-107. doi: 10.1016/j.ijantimicag.2011.02.014
Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Wang, J., Ding, Y., Zhang, S., Yang, X., Lei, T., Xue, L. & Wu, H. (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in China. Frontiers in Microbiology, 10, 641. doi: 10.3389/fmicb.2019.00641
Dannenberg, G. S., Funck, G. D., Cruxen, C. E. S., Marques, J. L., Silva, W. P. & Fiorentini, A.M. (2017). Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: Potential for application as active packaging for sliced cheese. LWT - Food Science and Technology, 81, 314-318. doi: 10.1016/j.lwt.2017.04.002
Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedure in multiple comparisons. Ciência e Agrotecnologia, 38 (2), 109-112. doi: 10.1590/S1413-70542014000200001
Finger, J. A. F. F., Baroni, W. S. G. V., Maffei, D. F., Bastos, D. H. M. & Pinto, U. M. (2019). Overview of foodborne disease outbreaks in Brazil from 2000 to 2018. Foods, 8 (10), 434. doi: 10.3390/foods8100434
Freitas, M. L. F., Dutra, M. B. L. & Bolini, H. M. A. (2016). Sensory profile and acceptability for pitanga (Eugenia uniflora L.) nectar with different sweeteners. Food and Science Technology International, 22 (8), 720-731. doi: 10.1177/1082013215607077
Garzón, G. A., Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R. & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon, 6 (5), e03845. doi: 10.1016/j.heliyon.2020.e03845
Gonçalves, A. L., Alves Filho, A. & Menezes, H. (2005). Comparative study on antimicrobial activity of some native tree extracts. Arquivos do Instituto Biológico, 72 (3), 353-358. doi: 10.3109/13880209.2011.596205
Han, J. W., Ruiz‐Garcia, L., Qian, J. P. & Yang, X. T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17 (4), 860-877. doi: 10.1111/1541-4337.12343
Huang, D., Ou, B. & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53 (6), 1841-1856. doi: 10.1021/jf030723c
Infante, J., Rosalen, P. L., Lazarini, J. G., Franchin, M. & Alencar, S. M. (2016). Antioxidant and anti-inflammatory activities of unexplored Brazilian native fruits. PloS One, 11 (4), e0152974. doi: 10.1371/journal.pone.0152974
Kim, D. O., Jeong, S. W. & Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81 (3), 321-326. doi: 10.1016/S0308-8146(02)00423-5
Lima, V. L. A., Mélo, E. A. & Lima, D. E. S. (2005). The effects of light and freezing temperature upon the stability of purple surinam cherry’s anthocyanin. Food Science and Technology, 25 (1), 92-94. doi: 10.1590/S0101-20612005000100015
Machado, V., Pardo, L., Cuello, D., Giudice, G., Luna, P. C., Varela, G., Camou, T. & Schelotto, F. (2020). Presence of genes encoding enterotoxins in Staphylococcus aureus isolates recovered from food, food establishment surfaces and cases of foodborne diseases. Revista do Instituto de Medicina Tropical de São Paulo, 62, e5. doi: 10.1590/s1678-9946202062005
Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C. Y. O. & Lima, G. P. P. (2017). Phenolic compounds: Functional properties, impact of processing and bioavailability. In: Soto-Hernandez, M., Palma-Tenango, M. & Garcia-Mateos. Phenolic Compounds - Biological Activity. Rijeka, Croatia: InTech.
Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M. P. & Fernández-García, M. (2019). Bio-based polymers with antimicrobial properties towards sustainable development. Materials, 12 (4), 641. doi: 10.3390/ma12040641
Oliveira, L. M. & Oliveira, P. A. P. L. V. (2004). Review: main antimicrobial agents used in plastic packaging. Brazilian Journal of Food Technology, 7 (172), 161-165. Retrieved from
Pessini, G. L., Holetz, F. B., Sanches, N. R., Cortez, D. A. G., Dias Filho, B. P. & Nakamura, C. V. (2003). Avaliação da atividade antibacteriana e antifúngica de extratos de plantas utilizados na medicina popular. Revista Brasileira de Farmacognosia, 13, 21-24. doi: 10.1590/S0102-695X2003000300009
Quecán, B. X. V., Rivera, M. L. C., Hassimotto, N. M. A., Almeida, F. A. & Pinto, U. M. (2019). Effect of quercetin rich onion extracts on bacterial quorum sensing. Frontiers in Microbiology, 10, 867. doi: 10.3389/fmicb.2019.00867
Rais, C., Driouch, A., Slimani, C., Bessi, A., Balouiri, M., El Ghadraoui, L., Lazraq, A. & Figuigui, J. A. (2019). Antimicrobial and antioxidant activity of pulp extracts from three populations of Ziziphus lotus L.. Nutrition & Food Science, 49 (6), 1014-1028. doi: 10.1108/NFS-08-2018-0232
Restrepo, E. A., Rojas, J. D., García, O. R., Sánchez, L. T., Pinzón, M. I. & Villa, C. C. (2018). Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Science and Technology International, 24 (8), 705-712. doi: 10.1177/1082013218792133
Rodrigues, A. C., Zola, F. G., Oliveira, B. D. A., Sacramento, N. T. B., Silva, E. R., Bertoldi, M. C., Taylor, J. G. & Pinto, U. M. (2016). Quorum quenching and microbial control through phenolic extract of Eugenia uniflora fruits. Journal of Food Science, 81 (10), 2538-2544. doi: 10.1111/1750-3841.13431
Salawu, S. O., Ogundare, A. O., Ola-Salawu, B. B. & Akindahunsi, A. A. (2011). Antimicrobial activities of phenolic containing extracts of some tropical vegetables. African Journal of Pharmacy and Pharmacology, 5 (4), 486-492. doi: 10.5897/AJPP10.317
Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L. & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods, 5 (21), 5990-5999. doi: 10.1039/c3ay41125g
Santos, C. A., Almeida, F. A., Quecán, B. X. V., Pereira, P. A. P., Gandra, K. M. B., Cunha, L. R. & Pinto, U. M. (2020). Bioactive properties of Syzygium cumini (L.) skeels pulp and seed phenolic extracts. Frontiers in Microbiology, 11, 990. doi: 10.3389/fmicb.2020.00990
Silva, N. C. C., Barbosa, L., Seito, L. N. & Fernandes Junior, A. (2012). Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research, 26 (16), 1510-1514. doi: 10.1080/14786419.2011.564582
Silva, N. A. D, Rodrigues, E., Mercadante, A. Z. & Rosso, V. V. (2014). Phenolic compounds and carotenoids from four fruits native from the Brazilian Atlantic forest. Journal of Agricultural and Food Chemistry, 62 (22), 5072-5084. doi: 10.1021/jf501211p
Silva, L. N., Da Hora, G. C. A., Soares, T. A., Bojer, M. S., Ingmer, H., Macedo, A. J. & Trentin, D. S. (2017). Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Scientific Reports, 7 (1), 1-16. doi: 10.1038/s41598-017-02712-1
Silveira, M. F. A, Soares, N. F. F, Geraldine, R. M., Andrade, N. J. & Gonçalves, M. P. J. (2007). Antimicrobial efficiency and sorbic acid migration from active films into pastry dough. Packaging Technology and Science, 20 (4), 287-292. doi: 10.1002/pts.757
Soares, N. F. F. & Hotchkiss, J. H. (1998). Bitterness reduction in grapefruit juice through active packaging. Packaging Technology and Science, 11 (1), 9-18. doi: doi.org/10.1002/(SICI)1099-1522(199802)11:1<9::AID-PTS413>3.0.CO;2-D
Tayyarcan, E. K., Soykut, E. A., Yilmaz, O. M., Boyaci, I. H., Khaaladi, M. & Fattouch, S. (2019). Investigation of different interactions between Staphylococcus aureus phages and pomegranate peel, grape seed, and black cumin extracts. Journal of Food Safety, 39 (5), e12679. doi: 10.1111/jfs.12679
Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2 (12), 1231-1246. doi: 10.3390/nu2121231
Waterhouse, A.L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6 (1) pp. 1-8. doi: 10.1002/0471142913.fai0101s06
WHO - World Health Organization. (2020). Food Safety. Retrieved October, 2020, from https://www.who.int/news-room/fact-sheets/detail/food-safety
Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Lei, T., Chen, M., Ding, Y. & Xue, L. (2018). Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Frontiers in Microbiology, 9, 1263. doi: 10.3389/fmicb.2018.01263
Zola, F. G., Rodrigues, A. C., Oliveira, B. D. Á., Sacramento, N. T. B., Taylor, J. G., Pinto, U. M. & Bertoldi, M. C. (2019). Mineral and centesimal contents, antioxidant activity and antimicrobial action of phenolic compounds from Eugenia brasiliensis Lam. Pulp. Food Science and Technology, 39 (2), 378-385. doi: 10.1590/fst.18518
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Franciele Mendes de Carvalho ; Jessica Tatiana Aparecida Martins; Emília Maria França Lima; Hellen Vidal Santos; Patrícia Aparecida Pimenta Pereira; Uelinton Manoel Pinto; Luciana Rodrigues da Cunha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.