Aplicación de modelo epidemiológico Susceptible - Infectado - Recuperado delante de la COVID-19: una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9499

Palabras clave:

Modelo epidemiológico SIR; COVID-19; Nuevo coronavirus

Resumen

El objetivo de este artículo es analizar, a través de una revisión sistemática de la literatura, la aplicación del modelo epidemiológico Susceptible-Infectado-Recuperado, SIR, en el escenario de la pandemia causada por el SARS-CoV-2. Para ello, se realizó un estudio bibliográfico de producciones científicas por medio de la interfaz PubMed, que se relaciona con la base de datos MEDLINE, y Biblioteca Virtual en Salud, destacando hallazgos que presentaban alguna referencia al modelo epidemiológico SIR con comparaciones, aplicación a la enfermedad y críticas en el contexto de COVID-19. Se encontraron 151 documentos y luego de leer y definir los criterios de selección, se seleccionaron 7 artículos para un análisis más detallado de la aplicación del modelo. Como resultado de la recolección de datos, se identificaron las siguientes categorías de análisis: Público objetivo, aspectos y aportes al conocimiento de la enfermedad, modelos utilizados como referencias a los artículos, valoración y presentación de limitaciones y críticas identificadas en el uso de estos modelos para COVID-19. Se observó que no hay conformidad con respecto al uso de un modelo matemático más adecuado y para el uso del modelo SIR, en este contexto, se sugirieron adaptaciones para obtener un resultado más preciso.

Biografía del autor/a

Alisson dos Anjos Santos, Universidade Federal da Bahia (UFBA)

Graduando do curso de Bacharelado Interdisciplinar em Saúde. Desenvolve atividades de pesquisa na UFBA e atua como extensionista no Complexo Hospitalar Universitário Professor Edgard Santos. Salvador, Bahia, Brasil.

Jamile de Almeida Santos, Universidade Federal da Bahia

Graduanda do curso de Bacharelado Interdisciplinar em Saúde e atua em atividades de pesquisa na UFBA.

Júlia Spínola Ávila, Universidade Federal da Bahia

Graduanda do curso de Bacharelado Interdisciplinar em Saúde e atua em atividades de pesquisa na UFBA.

Maria Carolina Nascimento Carmo, Universidade Federal da Bahia

Graduanda do curso de Bacharelado Interdisciplinar em Saúde.

Nátali de Carvalho Lima, Universidade Federal da Bahia

Graduanda do curso de Bacharelado Interdisciplinar em Saúde.

Helianildes Silva Ferreira, Universidade Federal da Bahia

Doutora em engenharia química pela Universidade Estadual de Campinas e professora do Instituto de Química da Universidade Federal da Bahia.

Citas

Barlow, N. S, & Weinstein, S. J. (2020). Accurate closed-form solution of the SIR epidemic model. Physica D: Nonlinear Phenomena, 408. Recuperado de https://www.sciencedirect.com/science/article/pii/S0167278920302694?via%3Dihub. doi: https://doi.org/10.1016/j.physd.2020.132540.

Barros, L. C, Leite, M. B. F, Oliveira, R. Z. G, & Bassanezi, R. C. (2007). Sobre incertezas em modelos epidemiológicos do tipo SIS. Biomatemática, 17, 47–54. Recuperado de http://www.ime.unicamp.br/~biomat/bio17_art5.pdf.

Barros, A. S. (2013). Dinâmica Estocástica para Modelar o Efeito da Reinfecção em Doenças de Transmissão Direta. Dissertação (Mestrado). Universidade Federal da Bahia. Instituto de Física. Salvador. Recuperado de https://blog.ufba.br/pgif/files/2016/05/D144-IF-UFBA.pdf.

Bento, A. (2012). Como fazer uma revisão da literatura: considerações teóricas e práticas. Revista JA (Associação Académica da Universidade da Madeira), 65, 42-44, ISSN: 1647-8975. Recuperado de http://www3.uma.pt/bento/Repositorio/Revisaodaliteratura.pdf.

Caetano, M. T. P. (2010). Modelagem Matemática da Influenza A (H1N1). Dissertação (mestrado profissional). Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica - IMECC. Recuperado de http://repositorio.unicamp.br/bitstream/REPOSIP/307205/1/Caetano_MarcoTulioPeres_M.pdf.

Cao, Z., Zhang, Q., Lu, X., Pfeiffer, D., Jia, Z, Song, H., et al. (2020). Estimating the effective reproduction number of the 2019-nCoV in China. medRxiv. Recuperado de https://www.medrxiv.org/content/10.1101/2020.01.27.20018952v1. doi: https://doi.org/10.1101/2020.01.27.20018952.

Cristóvão, R. B. (2015). Modelo SIR: Uma Aplicação à Hepatite A. Universidade de São Paulo - USP. Recuperado de https://www.ime.usp.br/~map/tcc/2015/Rafael%20Belmiro.pdf.

Echer, I. C. A. (2001). Revisão de literatura na construção do trabalho científico. Porto Alegre: Revista Gaúcha de Enfermagem, 22(2), 5-20. Recuperado de https://seer.ufrgs.br/RevistaGauchadeEnfermagem/article/view/4365.

Ibarra-Vega, D. (2020). Lockdown, one, two, none, or smart. Modeling containing COVID-19 infection. A conceptual model. Science of The Total Environment, 730(15). Recuperado de https://www.sciencedirect.com/science/article/pii/S0048969720324347?via%3Dihub. doi: https://doi.org/10.1016/j.scitotenv.2020.138917.

InfoGripe. (2020). Situação da gripe. Recuperado de http://info.gripe.fiocruz.br/.

Ivorra, B., Ferrández, M. R., Vela-Pérez, M., & Ramo, A. M. (2020). Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Communications in Nonlinear Science and Numerical Simulation, 88. Recuperado de https://www.sciencedirect.com/science/article/pii/S1007570420301350?via%3Dihub. doi: https://doi.org/10.1016/j.cnsns.2020.105303.

Ivorra, B., Ngom, D., & Ramos, A. M. (2018). Be-CoDiS (Between-COuntries Disease Spread) epidemiological model. Recuperado de http://www.mat.ucm.es/~ivorra/softbecodis.htm.

Karako, K., Song, P., Chen, Y., & Tang, W. (2020). Analysis of COVID-19 infection spread in Japan based on stochastic transition model. BioScience Trends, 14(2), 134-138. Recuperado de https://pubmed.ncbi.nlm.nih.gov/32188819/. doi: https://doi.org/10.5582/bst.2020.01482.

Kermack, W. O. &, McKendrick, A. G. (1932). A contribution to the mathematical theory of epidemics. II. The problem of endemicity. Proceeding of the Royal Society A, 138, 55-83. Recuperado de https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1932.0171. doi: https://doi.org/10.1098/rspa.1932.0171.

Lana, R. M., Coelho, F. C., Gomes, M. F. C., Cruz, O. G., Villela, D. A. M., & Codeço, C. T. (2020). Emergência do novo coronavírus (SARS-CoV-2) e o papel de uma vigilância nacional em saúde oportuna e efetiva. Cadernos de Saúde Pública, [S.l.], 36(3). Recuperado de https://www.scielo.br/pdf/csp/v36n3/1678-4464-csp-36-03-e00019620.pdf. doi: https://doi.org/10.1590/0102-311x00019620.

Liu, F., Li, X., & Zhu, G. (2020). Using the contact network model and Metropolis-Hastings sampling to reconstruct the COVID-19 spread on the “Diamond Princess”. Science Bulletin, 65, 1297-1305, 2020. Recuperado de https://www.sciencedirect.com/science/article/pii/S2095927320302814?via%3Dihub. doi: https://doi.org/10.1016/j.scib.2020.04.043.

Moher, D., Liberati, A., Tetzlaff J., Altman, D. G., & The Prisma Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The Prisma Statement. PLoS Med 6(7): e1000097. Recuperado de https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1000097&type=printable. doi: https://doi.org/10.1371/journal.pmed.1000097.

Organização Pan-Americana de Saúde. (2010). Módulo de Princípios de Epidemiologia para o Controle de Enfermidades (MOPECE): Controle de doenças na população. Brasília (DF). Recuperado de http://bvsms.saude.gov.br/bvs/publicacoes/modulo_principios_epidemiologia_1.pdf.

Praciano, J. B. A., & Feitosa, R. A. (2020). Science in the final years of elementary school: a systematic literature review. Research, Society and Development, 9(6), e121963489. Recuperado de https://rsdjournal.org/index.php/rsd/article/view/3489/3846Research. doi: https://doi.org/10.33448/rsd-v9i6.3489.

Proetti, S. (2017). As pesquisas qualitativa e quantitativa como métodos de investigação científica: um estudo comparativo e objetivo. São Paulo: Revista Lumen, 2(4). Recuperado de http://www.periodicos.unifai.edu.br/index.php/lumen/article/view/60. doi: http://dx.doi.org/10.32459/revistalumen.v2i4.60.

Read, M. J., Bridgen, J. R. E., Cummings, D. A. T., Ho, A., & Aewell, C. P. (2020). Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv. Recuperado de https://www.medrxiv.org/content/10.1101/2020.01.23.20018549v2.article-metrics. doi: https://doi.org/10.1101/2020.01.23.20018549.

Rocchi, E., Peluso, S., Sisti, D., & Carlleti, M. A. (2020). Possible Scenario for the COVID-19 Epidemic, Based on the SI(R) Model. SN Comprehensive Clinical Medicine, 2, 501–503. Recuperado de https://link.springer.com/article/10.1007/s42399-020-00306-z. doi: https://doi.org/10.1007/s42399-020-00306-z.

Roda, W. C., Varughese, M. B., Han, D., & Li, M. Y. (2020). Why is it difficult to accurately predict the COVID-19 epidemic? Infectious Disease Modelling, 5, 271-281. Recuperado de https://pubmed.ncbi.nlm.nih.gov/32289100/. doi: https://doi.org/10.1016/j.idm.2020.03.001.

Selvati, F. de S., Teixeira, L. G. F., Loureiro, L. H., & Pereira, R. M. da S. (2020). Covid-19 control strategies in Brazil: what does the pandemic teach us?. Research, Society and Development, 9(8), e664986293. Recuperado de https://rsdjournal.org/index.php/rsd/article/view/6293/5843. doi: https://doi.org/10.33448/rsd-v9i8.6293.

Silva, A. A. M. (2020). Sobre a possibilidade de interrupção da epidemia pelo coronavírus (COVID-19) com base nas melhores evidências científicas disponíveis. Rio de Janeiro: Revista brasileira de epidemiologia, 23, e200021. Recuperado de https://www.scielo.br/pdf/rbepid/v23/1980-5497-rbepid-23-e200021.pdf. doi: https://doi.org/10.1590/1980-549720200021.

Silva, E. de S. M. e, Ono, B. H. V. S., Souza, J. C., & Menin, I. B. F. (2020). Media and health promotion in times of COVID-19. Research, Society and Development, 9(8), e842986252. Recuperado de https://rsdjournal.org/index.php/rsd/article/view/6252. doi: https://doi.org/10.33448/rsd-v9i8.6252.

Tang, Y., & Wang, S. (2020). Mathematic modeling of COVID-19 in the United States. Emerging Microbes & Infections, 9, 827-829. Recuperado de https://www.sciencedirect.com/science/article/pii/S246804272030018X. doi: https://doi.org/10.1080/22221751.2020.1760146.

Tavares, J. N. (2017). Modelo sir em epidemiologia. Revista de Ciência Elementar, 5, rce2017–020. Recuperado de https://rce.casadasciencias.org/rceapp/art/2017/020/. doi: http://doi.org/10.24927/rce2017.020.

Troyo, G. A. (2013). Modelo SIR em rede e com parâmetro de infecção que depende periodicamente do tempo. Dissertação (mestrado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação. Rio de Janeiro: UFRJ/COPPE. Recuperado de https://www.cos.ufrj.br/uploadfile/1372347694.pdf.

Word Health Organization. (2020). Archived: WHO Timeline - COVID-19. Recuperado de https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19.

Publicado

12/11/2020

Cómo citar

SANTOS, A. dos A. .; SANTOS, J. de A. . .; ÁVILA, J. S. .; CARMO, M. C. N. .; LIMA, N. de C. .; FERREIRA, H. S. Aplicación de modelo epidemiológico Susceptible - Infectado - Recuperado delante de la COVID-19: una revisión sistemática de la literatura. Research, Society and Development, [S. l.], v. 9, n. 11, p. e2139119499, 2020. DOI: 10.33448/rsd-v9i11.9499. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9499. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias de la salud