Nitrogen and phosphorus dynamics in Nile tilapia farming in excavated rearing ponds

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9699

Keywords:

Excavated ponds; Effluent; Harvest; Water quality.

Abstract

The purpose of this study was to determine the total nitrogen (TN) and total phosphorus (TP) balance during intensive tilapia farming in excavated ponds. To quantify TN and TP released into the environment, the supply water, effluents at the harvest time, fish composition, feed, and sediment were analysed. The mass balance between the amount of nutrients that is inserted through the feed, which is transformed into biomass by the fish and is retained in the sediment was calculated based on dry matter. The nutrient load arriving from the supply water was calculated as a function of the concentration of TN and TP. The TN and TP dynamics during the harvesting process in three different pond sizes identified that, on average, 2.37% of TN and 2.05% of TP inserted into the system during rearing is eliminated with 10.64% TN and 37.01% TP are retained in the sediment. The TN and TP input into the system occurs through the water supply, young fish, and the feed, the latter being responsible for about 92.87% TN and 96.05% TP. The feed composition indicates that the P level of the food is above the nutritional recommendations for the species. The amount of TP accumulated in the sediments indicates that there is a need for good management practices for water quality during the rearing and sediment management period before the beginning of a new production cycle.

References

Alexander, K., Angel, D., Freeman, S., Israel, D., Johansen, J., Kletou, D., Meland, M., Pecorino, D., Rebours, C., Rousou, M., Shorten, M., & Potts, T. (2016). Improving sustainability of aquaculture in europe: Stakeholder dialogues on integrated multi-trophic aquaculture (IMTA). Environmental Science & Policy, 55, 96–106. https:// doi.org/10.1016%2Fj.envsci.2015.09.006. doi:10.1016/j.envsci.2015.09.006.

AOAC (2016). Official Methods of Analysis of the Association of Official Analytical Chemists. (20th ed.). Hoboken, NJ, USA: John Wiley & Sons, Inc.

APHA (2017). Water and Wastewater Examination Manual. Routledge. Doi:10.1201/9780203734131.

Bhatnagar, A., & Devi, P. (2013). Water quality guidelines for the management of pond fish culture. International journal of environmental sciences, 3, 1980–2009.

Bomfim, M. (2013). Estratégias nutricionais para redução das excreções de nitrogênio e fósforo nos sistemas de produção de peixes no nordeste: Sustentabilidade ambiental e aumento da produtividade. Revista Cientı́fica de Produção Animal, 15, 122–140. URL: https://doi.org/10.15528%2F2176-4158%2Frcpa.v15n2p122-140.

Boscolo, W. R., Feiden, A., Reidel, A., Broll, F., Holdefer, A., Santos, R. V., & Maranhão, R. C. F. (2003). Exigência de fósforo da tilápia do Nilo (Oreochromis niloticus) na fase de crescimento. Varia Scientia, 3, 115–124.

Boscolo, W. R., Signor, A., Freitas, J. d., Bittencourt, F., & Feiden, A. (2011). Nutrição de peixes nativos. Revista Brasileira de Zootecnia, 40.

Bouwman, A. F., Beusen, A. H. W., Overbeek, C. C., Bureau, D. P., Pawlowski, M., & Glibert, P. M. (2013). Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Reviews in Fisheries Science, 21, 112–156. https://doi.org/10.1080%2F10641262.2013.790340.

Boyd, C., & McNevin, A. (2015). Aquaculture, Resource Use, and the Environment. Wiley.

Boyd, C. E. (1999). Aquaculture sustainability and environmental issues. World Aquaculture, 30, 101–112.

Boyd, C. E., & Queiroz, J. (2001). Nitrogen, phosphorus loads vary by system. The Advocate, 84–86.

Boyd, C. E., Tucker, C., Mcnevin, A., Bostick, K., & Clay, J. (2007). Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Reviews in Fisheries Science, 15, 327–360. URL: https://doi.org/10.1080%2F10641260701624177. doi:10.1080/10641260701624177.

Boyd, E. E., & Queiroz, J. F. (2004). Manejo das condições do sedimento do fundo e da qualidade da água e dos efluentes de viveiros. In J. E. P. Cyrino, E. C. Urbinati, & D. M.

Fracalossi (Eds.), Tópicos especiais em piscicultura de água doce tropical intensiva. 25–43. Jaboticabal, São Paulo, Brasil: Sociedade Brasileira de Aquacultura e Biologia Aquática.

Brasil (2011). Resolução no 430, de 13 de maio de 2011. dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a resolução no 357, de 17 de março de 2005, do conselho nacional do meio ambiente-conama. Diário Oficial da União.

Chatvijitkul, S., Boyd, C. E., Davis, D. A., & McNevin, A. A. (2017). Pollution potential indicators for feed-based fish and shrimp culture. Aquaculture, 477, 43–49. https://doi.org/10.1016%2Fj.aquaculture.2017.04.034. doi:10.1016/j.aquaculture.2017.04.034.

Coldebella, A., Gentelini, A. L., Piana, P. A., Coldebella, P. F., Boscolo, W. R., & Feiden, A. (2018). Effluents from fish farming ponds: A view from the perspective of its main components. Sustainability, 10, 3.

Colt, J., & Kroeger, E. (2013). Impact of aeration and alkalinity on the water quality and product quality of transported tilapia—a simulation study. Aquacultural Engineering, 55, 46–58. https://doi.org/10.1016%2Fj.aquaeng.2013.03.002.

Cyrino, J. E. P., de Almeida Bicudo, Á. J., Sado, R. Y., Borghesi, R., & Dairik, J. K. (2010). A piscicultura e o ambiente: o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia, 39, 68–87. https://doi.org/10.1590%2Fs1516-35982010001300009.

FAO (2018). The State of World Fisheries and Aquaculture 2018. UN. doi:10.18356/8d6ea4b6-en.

Figueiró, C., de Oliveira, D. B., Russo, M., Caires, A., & Rojas, S. (2018). Fish farming water quality monitored by optical analysis: The potential application of UV–vis absorption and fluorescence spectroscopy. Aquaculture, 490, 91–97. https://doi.org/10.1016%2Fj.aqua culture.2018.02.027.

Green, J., Hardy, R., & Brannon, E. (2002). Effects of dietary phosphorus and lipid levels on utilization and excretion of phosphorus and nitrogen by rainbow trout (oncorhynchus mykiss). 1. laboratory-scale study. Aquaculture Nutrition, 8, 279–290.https://doi.org/10.1046%2F j.1365-2095.2002.00218.x.

Gross, A., Boyd, C. E., & Wood, C. (2000). Nitrogen transformations and balance in channel catfish ponds. Aquacultural Engineering, 24, 1–14.

Hu, J., Qiao, Y., Zhou, L., & Li, S. (2012). Spatiotemporal distributions of nutrients in the downstream from gezhouba dam in Yangtze river, China. Environmental Science and Pollution Research, 19, 2849–2859. URL: https://doi.org/10.1007%2Fs11356-012-0791-6. doi:10.1007/s11356-012-0791-6.

Leira, M. H., da Cunha, L. T., Braz, M. S., Melo, C. C. V., Botelho, H. A., & Reghim, L. S. (2017). Water quality and its use fish farms. Pubvet, 11, 11–17. doi:10.22256/pub vet.v11n1.11-17.

Macedo, C. F., & Sipaúba-Tavares, L. H. (2018). Eutrofização e qualidade da água na piscicultura: consequências e recomendações. Boletim do Instituto de Pesca, 36, 149–163.

Mardini, C. V., & Mardini, L. B. L. F. (2006). Cultivo de Peixes. Embrapa Informação Tecnológica. ABC da Agricultura Familiar. Editora da ULBRA.

Masuda, K., & Boyd, C. E. (1994). Phosphorus fractions in soil and water of aquaculture ponds built on clayey ultisols at auburn, alabama. Journal of the world aquaculture society, 25, 379–395.

Oca, J., & Masaló, I. (2007). Design criteria for rotating flow cells in rectangular aquaculture tanks. Aquacultural Engineering, 36, 36–44. URL:https://doi.org/10.1016%2Fj .aquaeng.2006.06.001.

Oca, J., Masaló, I., & Reig, L. (2004). Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics. Aquacultural Engineering, 31, 221–236. https://doi.org/10.1016%2Fj.aquaeng.2004.04.002.

Osti, J. A. S., Moraes, M. A. B., Carmo, C. F., & Mercante, C. T. J. (2017). Nitrogen and phosphorus flux from the production of nile tilapia through the application of environmental indicators. Brazilian Journal of Biology, 78, 25–31. URL: https://doi.org/10.1590%2F1519-6984.02116. doi:10.1590/1519-6984.02116.

Palácio, S. M., Espinoza-Quiñones, F. R., de Pauli, A. R., Piana, P. A., Queiroz, C. B., Fabris, S. C., Fagundes-Klen, M. R., & Veit, M. T. (2016). Assessment of anthropogenic impacts on the water quality of Marreco river, Brazil, based on principal component analysis and toxicological assays. Water, Air, & Soil Pollution, 227. https://doi.org/10.1007%2Fs11270-016-3025-6.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria. URL: https://www.R-project.org/.

Santos, A. A. O., & Camargo, A. F. M. (2014). Constructed wetlands for treatment of harvest effluents from grow-out ponds of the amazon river prawn. Aquaculture Research, 46, 2676–2684. https://doi.org/10.1111%2Fare.12423.

Schamber, C. R., Boscolo, W. R., Natali, M. R. M., Michelato, M., Furuya, V. R. B.,& Furuya, W. M. (2014). Growth performance and bone mineralization of large Nile tilapia (oreochromis niloticus) fed graded levels of available phosphorus. Aquaculture International, 22 , 1711–1721. https://doi.org/10.1007%2Fs10499-014-9776-4.

Sibrell, P. L., & Kehler, T. (2016). Phosphorus removal from aquaculture effluents at the northeast fishery center in lamar, pennsylvania using iron oxide sorption media. Aquacultural Engineering, 72-73, 45–52. https://doi.org/10.1016%2Fj.aquaeng.2016.04.003.

Sibrell, P. L., & Tucker, T. W. (2012). Fixed bed sorption of phosphorus from wastewater using iron oxide-based media derived from acid mine drainage. Water, Air, & Soil Pollution, 223, 5105–5117. https://doi.org/10.1007%2Fs11270-012-1262-x.

Sussel, F. R. (2013). Tilapicultura no Brasil e entraves na produção. ftp://ftp.sp.gov.br/ftppesca/TilapiculturaEntraves.pdf.

Tucker, C., & Hargreaves, J. (2009). Environmental Best Management Practices for Aquaculture. Wiley.

Wang, X., Olsen, L., Reitan, K., & Olsen, Y. (2012). Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquaculture Environment Interactions, 2, 267–283. https://doi.org/10.3354%2Faei00044. doi:10.3354/aei00044.

Watten, B. J., Honeyfield, D. C., & Schwartz, M. F. (2000). Hydraulic characteristics of a rectangular mixed-cell rearing unit. Aquacultural Engineering, 24, 59–73. https://doi.org/10.1016%2Fs0144-8609%2800%2900064-9.

Downloads

Published

08/11/2020

How to Cite

COLDEBELLA, A.; GODOY, . A. C. .; GENTELINI, . A. L. .; PIANA, P. A. .; COLDEBELLA, P. F.; BOSCOLO, W. R. .; FEIDEN, A. Nitrogen and phosphorus dynamics in Nile tilapia farming in excavated rearing ponds. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1319119699, 2020. DOI: 10.33448/rsd-v9i11.9699. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9699. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences