Compostos bioativos e atividade antioxidante em variedades de tomates (Lycopersicon esculentum L.) in natura e após processamento térmico
DOI:
https://doi.org/10.33448/rsd-v9i11.10192Palavras-chave:
Processamento de alimentos; Carotenoides; Licopeno; Compostos fenólicos; Flavonoides.Resumo
O objetivo do estudo foi avaliar o impacto do processamento por cozimento em frutos in natura no conteúdo de compostos bioativos – vitamina C e ácido ascórbico, compostos fenólicos, flavonóides, carotenoides e antocianinas, licopeno e β-caroteno - e na atividade antioxidante – DPPH e FRAP - de 9 variedades de tomates comerciais e não comerciais. Os frutos foram colhidos quando atingiram o ponto de maturação fisiológica, sendo selecionados e avaliados in natura e após trituração e cozimento por 30 minutos. Ao final do experimento verificou-se que todos os compostos bioativos analisados apresentaram reduções quantitativas quando os frutos foram processados, sendo as cultivares cereja - 7, 8 e 9 - as que apresentaram resultados superiores em relação aos diferentes compostos bioativos avaliados mostrando-se interessantes para serem melhores exploradas. Já em relação às atividades antioxidantes, os frutos processados destas cultivares apresentaram menores perdas mostrando potencial para serem submetidas ao processamento.
Referências
Abreu, W. C., & Barcelos, M. F. P. (2012). Atividade antioxidante total da polpa de tomate submetida ao processamento térmico doméstico em diferentes tempos. Cient Ciênc Biol Saúde, 14(2), 71-6.
Aherne, S. A., Jiwan, M. A., Daly, T., O’brien, N. M. (2009). Geographical location has greater impact on carotenoid content and bioaccessibility from tomatoes than variety. Plant Foods Hum Nutr, 64, (4), 250–256. https://doi.org/10.1007/s11130-009-0136-x
Anthon, G. E., Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920. http://dx.doi.org/10.1016/j.
Araujo, J. C., Silva, P. P. M., Telhado, S. F. P., Sakai, R. H., Spoto, M. H. F., Melo, P. C. T. (2014). Physico-chemical and sensory parameters of tomato cultivares grown in organic systems. Horticultura Brasileira, 32(2), 205-209. https://dx.doi.org/10.1590/S0102-05362014000200015
Azeez, L., Segun, A. A., Oyedeji, A. O., Adetoro, R. O., Tijani, K. O. (2019). Bioactive compounds’ contents, drying kinetics and mathematicalmodelling of tomato slices influenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 18, 120–126121. https://doi.org/10.1016/j.jssas.2017.03.002
Benzie, I. F. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry 239. 70–76. http://dx.doi.org/10.1006/abio.1996.0292
Boiteux, L. S., Fonseca, M. E. N., Giordano, L. B., Melo, P. C. T. (2012). Melhoramento genético. In F. M. V. T. Clemente & L. S. Boiteux (Ed.), Produção de tomate para processamento industrial (pp. 31-50). Brasília: Embrapa.
Boonpangrak, S., Lalitmanat, S., Suwanwong, Y. (2016). Analysis of Ascorbic Acid and Isoascorbic Acid in Orange and Guava Fruit Juices Distributed in Thailand by LC-IT-MS/MS. Food Anal. Methods, 9:1616. https://doi.org/10.1007/s12161-015-0337-x
Borguini, R. G. (2002). Tomate (Lycopersicon esculentum Mill.) orgânico: o conteúdo nutricional e a opinião do consumidor. 2002. 110 f. Dissertação (Mestrado em Agronomia)-Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.
Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25-30, https://doi.org/10.1016/S0023-6438(95)80008-5
Cemeroglu, B., Karadeniz, F., Ozkan, M. (2003). Meyve sebze isleme teknolojisi. Gıda Teknolojisi Yayınları, 28, 469-472.
Chanforan, C., Loonis, M., Mora, N. (2012). The impact of industrial processing on health-beneficial tomato microconstituents. Food Chem., 134, 1786–1795. https://doi.org/10.1016/j.foodchem.2012.03.077
Cole, E., & Kapur, N. (1957). The stability of lycopene. I.‐Degradation by oxygen. Journal of the Science of Food and Agriculture, 8:6, 360-365. https://doi.org/10.1002/jsfa.2740080610
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 3, 350-356. https://doi.org/10.1021/ac60111a017
Food and Agricultural Organization - FAO. (2019). FAO Statistical Yearbook. New York, Recuperado de www.fao.com.
Instituto Adolfo Lutz - IAL. (2005). Métodos físico-químicos para análise de alimentos. 4 ed. Brasília: ANVISA,
Ilahy, R, Hduder, C, Lenucci, M. S., Tlili, I, Dalessandro, G. (2011). Phytochemical composition and antioxidant activity of highlycopene tomato (Solanum lycopersicum L.) cultivares grown in Southern Italy. Scientia Horticulturae, 127:3, 255-261. https://doi.org/10.1016/j.scienta.2010.10.001
Kalogeropoulos, N., Chiou, A., Pyriochou, V. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Sci Technol., 49, 213-216. https://doi.org/10.1016/j.lwt.2011.12.036
Nagata M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39:10, 925-928. https://doi.org/10.3136/nskkk1962.39.925
Nicoli, M., Anese, M., Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol., 10, 94–100. https://doi.org/10.1016/S0924-2244(99)00023-0.
Perez-Conesa, D., Garcia-Alonso, J., Garcia-Valverde, V., Iniesta, M. D., Jacob, K., Sanchez-Siles, L. M. (2009). Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative. Food Science and Emerging Technology, 10:2, 179–188. https://doi.org/10.1016/j.ifset.2008.12.001
Pernice, R., Parisi, M., Giordano, I., Pentangelo, A., Graziani, J., Gallo, M., Fogliano, V., Ritieni, A. (2010). Antioxidants profile of small tomato fruits: Effect of irrigationand industrial process. Scientia Horticulturae, 126, 156–163. https://doi.org/10.1016/j.scienta.2010.06.021
Raffo, A., La Malfa, G., Fogliano, V., Maiani, G., Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis, 19, 11–19. https://doi.org/10.1016/j.jfca.2005.02.003
Resende, E. C. O. (2010). Enzimas antioxidantes em frutos com diferentes padrões de amadurecimento. Orientadora: BRON, I. U. Campinas: IAC, 2010. 67f. Dissertação (Mestrado) – Instituto Agronômico, Campinas, Recuperado de http://www.iac.sp.gov.br/areadoinstituto/posgraduacao/dissertacoes/Evellyn%20Couto%20Oliveira.pdf. Acesso em: 07 jan. 2020.
Scalfi, L., Fogliano, V., Pentangelo, A. (2000). Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. J Agric Food Chem., 48:4, 1363–1366. https://doi.org/10.1021/jf990883h
Shi, J., Dai, Y., Kakuda, Y., Mittal, G., Xue, S. J. (2008). Effect of heating and exposure to light on the stability of lycopene in tomato purée. Food Control, 19:5, 514-520, https://doi.org/10.1016/j.foodcont.2007.06.002
Shi, J., Kakuda, Y., Yeung, D. 2004. Antioxidative properties of lycopene and other carotenoids from tomatoes: synergistic effects. Biofactors, 21, 203–210.
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X
Singh, P., & Goyal, G. K. (2008). Dietary lycopene: its properties and anticarcinogenic effects. Compr Rev Food Sci Food Saf, 7, 255–270. https://doi.org/10.1111/j.1541-4337.2008.00044.x
Singleton, V. L., & Rossi Jr, J. A. (1965). Colorimetry of total phenolics with phosphomolybidic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Singleton, V. L., Orthofer, R., Lamuela, R. M. 1999. Analysis of total phenol and other oxidation subtrates and antioxidants by means of Folin-Ciocauteau reagent. Methods of Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Souza, A. V., Vieira, M. R. S., Putti, F. F. (2018). Correlações entre compostos fenólicos e atividade antioxidante em casca e polpa de cultivares de uva de mesa. Brazilian Journal of Food and Technology, 21. https://doi.org/10.1590/1981-6723.10317
Szabo, K., Cătoi, A. F., Vodnar, D. C. (2018). Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods Hum Nutr., 73:268. https://doi.org/10.1007/s11130-018-0691-0
Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B. (2003). Processing effects on lycopene content and antioxidant activity of tomatoes. J Agric Food Chem.,, 49, 3713-7. https://doi.org/10.1021/jf0102721
Terada, M, Watanabe, Y, Kunitoma, M, Hayashi, E. (1978). Diferential rapid analyses of ascobic acid and ascorbic acid 2-sulfate by dinitrophenil hydrazine method. Am Biochem., 84, 604-608. https://doi.org/10.1016/0003-2697(78)90083-0
Taco -Tabela Brasileira de Composição de Alimentos/Nepa. (4th ed.). Campinas: Nepa-Unicamp, 2011
Vanzoonen, P. (1996). Analytical methods for pesticide residues in foodstuffs. (6th ed.), Netherlands: Ministery of Public Health, Welfare and Sport.
Vieira, M. C. S. (2016). Investigação dos compostos bioativos em tomates (Lycopersicon esculentum L.) após processamento térmico. 59 f. Dissertação (Mestrado) - Curso de Mestre em Agronomia (horticultura), Faculdade de Ciências Agronômicas da Unesp – Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu.
Vítolo, H. F., Souza, G., M., Silveira, J. (2012). Cross-scale multivariate analysis of hysiological esponses to high temperature in two tropical crops with C3 and C4 metabolism. Environmental and Experimental Botany, 80:1. https://doi.org/10.1016/j.envex pbot.2012.02.002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Angela Vacaro de Souza; Jéssica Marques de Mello; Vitória Ferreira da Silva Fávaro; Victória Farias da Silva; Diogo de Lucca Sartori; Fernando Ferrari Putti
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.