Cobertura cosmestível com extrato da folha de Eugenia pyriformis para controle do escurecimento enzimático de maçã minimamente processada

Autores

DOI:

https://doi.org/10.33448/rsd-v9i12.10799

Palavras-chave:

Alginato de sódio; Atividade enzimática; Compostos bioativos; Minimamente processado; Polifenol oxidase.

Resumo

Frutas e vegetais são partes importantes de uma dieta saudável e equilibrada. O consumo de frutas minimamente processadas é crescente, entretanto, manter a qualidade dos alimentos processados é um desafio para a indústria de alimentos. Ao processor os alimentos, diversas alterações enzimáticas podem ocorrer, o escurecimento enzimático é uma das principais degradações que maçãs minimamente processadas sofrem, sendo que uma das alternativas para redução desse escurecimento, é o uso de coberturas comestível com compostos antiescurecimento como por exemplo extratos vegetais ricos em compostos fenólicos. O objetivo do trabalho foi caracterizar o extrato da folha de Uvaia (Eugenia pyriformis Cambess) e avaliar o efeito da cobertura comestível de alginato de sódio formulada com extrato da folha de uvaia no escurecimento enzimático de maçãs minimamente processadas (cv. Golden Delicious e Royal Gala) durante 8 dias de armazenamento. Compostos fenólicos como o ácido clorogênico, ácido cafeíco e ácido p-coumárico foram identificados no extrato metanólico de folha de Uvaia. O extrato aquoso da folha de uvaia apresentou ABTS IC50 de 0.77 ± 0.002 mg/mL, aumentando 40.66% a atividade antioxidante da cobertura comestível quando adicionado. Para a maçã Golden Delicious o extrato aquoso de folha de uvaia controlou 80% da atividade da enzima polifenol oxidase e a cobertura comestível com extrato controlou o escurecimento enzimático. A cobertura comestível de alginato de sódio incoporada com extrato aquoso de Uvaia é uma alternativa para redução do escurecimento enzimático da maçã minimamente processada (cv. Golden Delicious).

Referências

Alves, M. M., Gonçalves, M. P., & Rocha, C. M. R. (2017). Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT - Food Science and Technology, 80, 409–415. https://doi.org/10.1016/j.lwt.2017.03.013.

Ansari, R., Khan, Z. H., Mular, S., & Khan, N. D. (2017). Extraction and characterization of polyphenol oxidase from pulp of apple fruit. International Journal of Applied Research, 3(1), 569–572.

AOAC International. (2000). Official methods of analysis of AOAC International. AOAC international.

Armstrong, L., do Rocio Duarte, M., & Miguel, O. G. (2012). Morpho-anatomy of the leaf and stem of eugenia pyriformis. Brazilian Journal of Pharmacognosy, 22(3), 475–481. https://doi.org/10.1590/S0102-695X2012005000022.

Badanai, J., Silva, C., Martins, D., Antunes, D., & Miguel, M. G. (2015). Ability of scavenging free radicals and preventing lipid peroxidation of some phenols and ascorbic acid. Journal of Applied Pharmaceutical Science, 5(8), 34–41. https://doi.org/10.7324/JAPS.2015.50806.

Buriol, L., Finger, D., Schmidt, E. M., Dos Santos, J. M. T., Da Rosa, M. R., Quináia, S. P., Torres, Y. R., Santa, H. S. D., Pessoa, C., De Moraes, M. O., Costa-Lotufo, L. V., Ferreira, P. M. P., Frankland Sawaya, A. C. H., & Eberlin, M. N. (2009). Chemical composition and biological activity of oil propolis extract: An alternative to ethanolic extract. Quimica Nova, 32(2), 296–302. https://doi.org/10.1590/S0100-40422009000200006.

Daniel, G., & Krishnakumari, S. (2015). Quantitative analysis of primary and secondary metabolites in aqueous hot extract of Eugenia uniflora (L) leaves. Asian Journal of Pharmaceutical and Clinical Research, 8(1), 334–338.

Guo, S., Zhang, L., Zhang, L., Zhao, M., & Meng, X. (2018). Inhibition kinetics of oligochitosan as an uncompetitive inhibitor on fuji apple polyphenol oxidase. Journal of Food Biochemistry, 42(5), 12585. https://doi.org/10.1111/jfbc.12585.

Haminiuk, C. W. I., Plata-Oviedo, M. S. V., de Mattos, G., Carpes, S. T., & Branco, I. G. (2014). Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. Journal of Food Science and Technology, 51(10), 2862–2866. https://doi.org/10.1007/s13197-012-0759-z.

Hutabarat, O. S., & Halbwirth, H. (2019). Polyphenol oxidase and peroxidase activity in apple: Dependency on cultivar and fruit processing. IOP Conference Series: Earth and Environmental Science, 355(1), 12106. https://doi.org/10.1088/1755-1315/355/1/012106

Klein, E. J., Santos, K. A., Palú, F., Vieira, M. G. A., & da Silva, E. A. (2018). Use of supercritical CO2 and ultrasound-assisted extractions to obtain Α/Β-amyrin-rich extracts from uvaia leaves (Eugenia pyriformis Cambess.). Journal of Supercritical Fluids, 137, 1–8. https://doi.org/10.1016/j.supflu.2018.02.019.

Lu, X., Yu, Y., Chen, L., Mao, H., Wang, L., Zhang, W., & Wei, Y. (2005). Poly(acrylic acid)-guided synthesis of helical polyaniline microwires. Polymer, 46(14), 5329–5333. https://doi.org/10.1016/j.polymer.2005.04.019.

Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology, 64, 23–38. https://doi.org/10.1016/j.tifs.2017.03.005.

Matumoto-Pintro, P. T., Rabiey, L., Robitaille, G., & Britten, M. (2011). Use of modified whey protein in yoghurt formulations. International Dairy Journal, 21(1), 21–26. https://doi.org/10.1016/j.idairyj.2010.07.003.

Olivas, G. I., Mattinson, D. S., & Barbosa-Cánovas, G. V. (2007). Alginate coatings for preservation of minimally processed “Gala” apples. Postharvest Biology and Technology, 45(1), 89–96. https://doi.org/10.1016/j.postharvbio.2006.11.018.

Perez-Gago, M. B., Serra, M., & Río, M. A. D. (2006). Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biology and Technology, 39(1), 84–92. https://doi.org/10.1016/j.postharvbio.2005.08.002.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay - electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. Free Radical Biology and Medicine, 26, 1231–1237. http://www.ingentaconnect.com/content/els/08915849/1999/00000026/00000009/art00315%5Cnhttp://dx.doi.org/10.1016/S0891-5849(98)00315-3.

Rojas-Graü, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT - Food Science and Technology, 41(1), 139–147. https://doi.org/10.1016/j.lwt.2007.01.009.

Salama, H. E., Abdel Aziz, M. S., & Sabaa, M. W. (2018). Novel biodegradable and antibacterial edible films based on alginate and chitosan biguanidine hydrochloride. International Journal of Biological Macromolecules, 116, 443–450. https://doi.org/10.1016/j.ijbiomac.2018.04.183.

Santiago, R. T., Fabián, M., Šepelák, V., Cotica, L. F., Santos, I. A., Machado, C. C. F., Hahn, H., Becker, K. D., & da Silva, K. L. (2018). Local structure analysis of Bi2(Ga1-xFex)4O9 mullite-type solid solutions synthesized via combination of ball milling and thermal treatment. Solid State Sciences, 82, 106–110. https://doi.org/10.1016/j.solidstatesciences.2018.06.009.

Sepulcre, F., Benítez, S., Achaerandio, I., & Pujol, M. (2015). LWT - Food Science and Technology Aloe vera as an alternative to traditional edible coatings used in fresh- cut fruits : A case of study with kiwifruit slices. LWT - Food Science and Technology, 61(1), 184–193. https://doi.org/http://dx.doi.org/10.1016/j.lwt.2014.11.036.

Singleton, V. L., & Rossi, J. A. J. (1965). Colorometry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.12691/ijebb-2-1-5.

Son, S. M., Moon, K. D., & Lee, C. Y. (2001). Inhibitory effects of various antibrowning agents on apple slices. Food Chemistry, 73(1), 23–30. https://doi.org/10.1016/S0308-8146(00)00274-0.

Sukhonthara, S., Kaewka, K., & Theerakulkait, C. (2016). Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree. Food Chemistry, 190, 922–927. https://doi.org/10.1016/j.foodchem.2015.06.016.

Tinello, F., & Lante, A. (2018). Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science and Emerging Technologies, 50(May), 73–83. https://doi.org/10.1016/j.ifset.2018.10.008.

Vinet, L., & Zhedanov, A. (2011). A “missing” family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44(8), 1028–1035. https://doi.org/10.1088/1751-8113/44/8/085201.

Vital, A. C. P., Croge, C., da Silva, D. F., Araújo, P. J., Gallina, M. Z., & Matumoto-Pintro, P. T. (2018). Okara residue as source of antioxidants against lipid oxidation in milk enriched with omega-3 and bioavailability of bioactive compounds after in vitro gastrointestinal digestion. Journal of Food Science and Technology, 55(4), 1518–1524. https://doi.org/10.1007/s13197-018-3069-2.

Waleed, a M., Sultan, S. H., & Hamza, S. R. (2009). Extraction and Characterization of Polyphenol Oxidase From Apricot, Apple, Eggplant and Potato. Mesopotamia Journal of Agriculture, 37(4), 28–36. https://www.iasj.net/iasj?func=article&aId=27497.

Yang, Y., & Wang, Z. (2008). Some properties of polyphenol oxidase from lily. International Journal of Food Science and Technology, 43(1), 102–107. https://doi.org/10.1111/j.1365-2621.2006.01398.x.

Yousuf, B., Qadri, O. S., & Srivastava, A. K. (2018). Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT - Food Science and Technology, 89(June 2016), 198–209. https://doi.org/10.1016/j.lwt.2017.10.051.

Downloads

Publicado

13/12/2020

Como Citar

MALDONADO-SILVA, L. H.; SARAIVA, B. R. .; VITAL, A. C. P. .; ANJO, F. A. .; TRAUTWEIN, R. S. .; SILVA, K. L. da .; BARBOSA, H. D.; LAZZARI, A.; CESARO, E. de .; MATUMOTO-PINTRO, P. T. Cobertura cosmestível com extrato da folha de Eugenia pyriformis para controle do escurecimento enzimático de maçã minimamente processada. Research, Society and Development, [S. l.], v. 9, n. 12, p. e7191210799, 2020. DOI: 10.33448/rsd-v9i12.10799. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10799. Acesso em: 8 jan. 2025.

Edição

Seção

Ciências Agrárias e Biológicas