Limpeza clean in place (CIP) de diferentes geometrias de aço inoxidável contaminadas com Pseudomonas fluorescens
DOI:
https://doi.org/10.33448/rsd-v9i12.10866Palavras-chave:
Higiene; Psicrotrófica; Fluidodinâmica; Segurança alimentar.Resumo
A presença de biofilmes nas superfícies de processamento de alimentos é uma preocupação constante e pode causar prejuízos econômicos e impactos na saúde pública. O objetivo deste trabalho foi avaliar o desenvolvimento de P. fluorescens na superfície do aço inoxidável, analisar a higienização CIP (clean in place) considerando diferentes geometrias, investigar a fluidodinâmica do escoamento e determinar o consumo dos insumos neste processo. Uma linha de circulação com as características de um laticínio foi empregada. A amostragem da superfície foi feita por meio da técnica swab e o desempenho do processo foi avaliado com base nas reduções decimais considerando a população inicial aderida. O estudo fluidodinâmico foi realizado com software FLUENT e o consumo foi determinado por meio de sensores de vazão e de corrente elétrica. Os resultados mostraram que a P. fluorescens aderiu a superfície alcançando em média 4,31 ± 0,26 log UFC∙cm-2, com a produção de exopolissacarídeos durante o tempo usual de operação da indústria. A redução decimal não foi significativamente diferente entre as geometrias da tubulação em trecho reto, cotovelo, expansão e redução. O trecho com ramificação em tê foi estatisticamente diferente das demais devido a uma zona de estagnação e recirculação de fluido. Os enxágues foram as etapas que mais consumiram água e a limpeza alcalina demandou mais energia para execução do CIP. As geometrias apresentaram segurança microbiológica após o processo CIP, exceto o tê. Além disso, ficou evidente a expressiva demanda de água e de energia para execução do processo.
Referências
Andrade, N. J. (2008). Higiene na indústria de alimentos: avaliação e controle da adesão e formação de biofilmes bacterianos. São Paulo: Varela.
Ansys Fluent, 14.5. (2014). User's and theory guide. Canonsburg, Pennsylvania, USA: ANSYS, Inc.
Bhutta, A., M. M., Hayat, N., Bashir, M. H., Khan, A. R., Ahmad, K. N., & Khan, S. (2012). CFD applications in various heat exchangers design: A review. Applied Thermal Engineering, 32, 1–12. http://doi:10.1016/j.applthermaleng.2011.09.001
Blel, W., Bénézech, T., Legentilhomme, P., Legrand, J., & Le Gentil-Lelièvre, C. (2007). Effect of flow arrangement on the removal of Bacillus spores from stainless steel equipment surfaces during a Cleaning In Place procedure. Chemical Engineering Science, 62(14), 3798–3808. http://doi:10.1016/j.ces.2007.04.011
Bode, K., Hooper, R. J., Paterson, W. R., Ian Wilson, D., Augustin, W., & Scholl, S. (2007). Pulsed Flow Cleaning of Whey Protein Fouling Layers. Heat Transfer Engineering, 28(3), 202–209. http://doi:10.1080/01457630601064611
Bouvier, L., Moreau, A., Ronse, G., Six, T., Petit, J., & Delaplace, G. (2014). A CFD model as a tool to simulate β-lactoglobulin heat-induced denaturation and aggregation in a plate heat exchanger. Journal of Food Engineering, 136, 56–63. http://doi:10.1016/j.jfoodeng.2014.03.025
Bremer, P. J., Fillery, S., & McQuillan, A. J. (2006). Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. International Journal of Food Microbiology, 106(3), 254–262. http://doi:10.1016/j.ijfoodmicro.2005.07.004
Costa, E. A., Carioca, L. J., Freitas, V. V., Martins, M. L., Martins, A. D. de O., & Pinto, C. L. de O. (2017). Avaliação da eficiência de sanitizantes sobre bactérias esporuladas isoladas de leite UHT integral. Revista Do Instituto de Laticínios Cândido Tostes, 71(1), 01. http://doi:10.14295/2238-6416.v71i1.442
Cunault, C., Faille, C., Bouvier, L., Föste, H., Augustin, W., Scholl, S., & Benezech, T. (2015). A novel set-up and a CFD approach to study the biofilm dynamics as a function of local flow conditions encountered in fresh-cut food processing equipments. Food and Bioproducts Processing, 93, 217–223. http://doi:10.1016/j.fbp.2014.07.005
Dev, S. R. S., Demirci, A., Graves, R. E., & Puri, V. M. (2014). Optimization and modeling of an electrolyzed oxidizing water based Clean-In-Place technique for farm milking systems using a pilot-scale milking system. Journal of Food Engineering, 135, 1–10. http://doi:10.1016/j.jfoodeng.2014.02.019
Figueiredo, H. M. de, Andrade, N. J. de, Ozela, E. F., & Morales, G. P. (2009). Influência da velocidade de circulação do leite na adesão de Pseudomonas aeruginosa sobre aço inoxidável. Ciência e Tecnologia de Alimentos, 29(3), 469–473. http://doi:10.1590/s0101-20612009000300002
Ge, Y., Zhu, J., Ye, X., & Yang, Y. (2017). Spoilage potential characterization ofShewanellaandPseudomonasisolated from spoiled large yellow croaker (Pseudosciaena crocea). Letters in Applied Microbiology, 64(1), 86–93. http://doi:10.1111/lam.12687
Jensen, B. B. B., & Friis, A. (2005). Predicting the cleanability of mix-proof valves by use of wall shear stress. Journal of Food Process Engineering, 28(2), 89–106. http://doi:10.1111/j.1745-4530.2005.00370.x
Jensen, B. B. B., Stenby, M., & Nielsen, D. F. (2007). Improving the cleaning effect by changing average velocity. Trends in Food Science & Technology, 18, S58–S63. http://doi:10.1016/j.tifs.2006.10.012
Kumari, S., & Sarkar, P. K. (2014). In vitro model study for biofilm formation by Bacillus cereus in dairy chilling tanks and optimization of clean-in-place (CIP) regimes using response surface methodology. Food Control, 36(1), 153–158. http://doi:10.1016/j.foodcont.2013.08.014
Lelièvre, C., Legentilhomme, P., Gaucher, C., Legrand, J., Faille, C., & Bénézech, T. (2002). Cleaning in place: effect of local wall shear stress variation on bacterial removal from stainless steel equipment. Chemical Engineering Science, 57(8), 1287–1297. http://doi:10.1016/s0009-2509(02)00019-2
Lemos, M., Mergulhão, F., Melo, L., & Simões, M. (2015). The effect of shear stress on the formation and removal of Bacillus cereus biofilms. Food and Bioproducts Processing, 93, 242–248. http://doi:10.1016/j.fbp.2014.09.005
Li, G., Tang, L., Zhang, X., & Dong, J. (2019). A review of factors affecting the efficiency of clean-in-place procedures in closed processing systems. Energy, 178, 57–71. http://doi:10.1016/j.energy.2019.04.123
Memisi, N., Moracanin, S. V., Milijasevic, M., Babic, J., & Djukic, D. (2015). CIP Cleaning Processes in the Dairy Industry. Procedia Food Science, 5, 184–186. http://doi:10.1016/j.profoo.2015.09.052
Ojeda, J. J., Romero-González, M. E., Bachmann, R. T., Edyvean, R. G. J., & Banwart, S. A. (2008). Characterization of the Cell Surface and Cell Wall Chemistry of Drinking Water Bacteria by Combining XPS, FTIR Spectroscopy, Modeling, and Potentiometric Titrations. Langmuir, 24(8), 4032–4040. http://doi:10.1021/la702284b
Pan, Q., Johansen, S. T., Olsen, J. E., Reed, M., & Sætran, L. R. (2021). On the turbulence modelling of bubble plumes. Chemical Engineering Science, 229, 116059. http://doi:10.1016/j.ces.2020.116059
Paz, C., Suárez, E., Concheiro, M., & Porteiro, J. (2013). Experimental study of soot particle fouling on ribbed plates: Applicability of the critical local wall shear stress criterion. Experimental Thermal and Fluid Science, 44, 364–373. http://doi:10.1016/j.expthermflusci.2012.07.008
Rossi, C., Chaves-López, C., Serio, A., Goffredo, E., Cenci Goga, B. T., & Paparella, A. (2016). Influence of incubation conditions on biofilm formation by Pseudomonas fluorescens isolated from dairy products and dairy manufacturing plants. Italian Journal of Food Safety, 5(3). http://doi:10.4081/ijfs.2016.5793
Silva, L. D., & Gedraite, R. (2018). Optimization of the CIP system enzyme stage for effluent reduction. Revista Eletrônica Em Gestão, Educação e Tecnologia Ambiental, 22, 12. http://doi:10.5902/2236117034708
Silva, L. D., Souza L. D., Santiago, T. S. A., Gedraite R. (2019). Control and tuning of pulsed flow for prototype CIP (clean in place). Congresso Brasileiro de Instrumentação, Sistemas e Automação, Anais. Campinas-SP.
Silva, L. D., Filho, U. C., Naves, E. A. A., & Gedraite, R. (2020). Pulsed flow in clean‐in‐place sanitization to improve hygiene and energy savings in dairy industry. Journal of Food Process Engineering. http://doi:10.1111/jfpe.13590
Tamime, A. (Ed.). (2008). Cleaning-in-Place: Dairy, Food and Beverage Operations. http://doi:10.1002/9781444302240
Tetra Pak. (2015). Cleaning in Place: A Guide to Cleaning Technology in the Food Processing Industry: Handbook. Editora. Tetra Pack Processing Systems.
Tugarova, A. V., Scheludko, A. V., Dyatlova, Y. A., Filip’echeva, Y. A., & Kamnev, A. A. (2017). FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610. Journal of Molecular Structure, 1140, 142–147. http://doi:10.1016/j.molstruc.2016.12.063
Wang, L., Keatch, R., Zhao, Q., Wright, J. A., Bryant, C. E., Redmann, A. L., & Terentjev, E. M. (2018). Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution. Applied and Environmental Microbiology, 84(6). http://doi:10.1128/aem.02343-17
Wu, M.-Y., Sendamangalam, V., Xue, Z., & Seo, Y. (2012). The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm. Biofouling, 28(10), 1119–1128. http://doi:10.1080/08927014.2012.732070
Yang, J., Jensen, B. B. B., Nordkvist, M., Rasmussen, P., Gernaey, K. V., & Krühne, U. (2018). CFD modelling of axial mixing in the intermediate and final rinses of cleaning-in-place procedures of straight pipes. Journal of Food Engineering, 221, 95–105. http://doi:10.1016/j.jfoodeng.2017.09.017
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Lucas Donizete Silva; Maíra Gontijo Moreira; Natália Trindade Guerra; Emiliane Araújo Andrade Naves; Priscila Cristina Bizam Vianna; Ubirajara Coutinho Filho; Rubens Gedraite
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.