Análise in silico de metabólitos ativos isolados de Libidibia ferrea Martius

Autores

DOI:

https://doi.org/10.33448/rsd-v9i12.10910

Palavras-chave:

Plantas medicinais; Predições; Neoplasias; Leishmaniose.

Resumo

O presente trabalho realizou estudos in silico para predição das atividades farmacocinéticas, físico-químicas, toxicológicas e biológicas de metabólitos isolados de Libidibia ferrea Martius, planta utilizada popularmente para o tratamento de inflamações e lesões, como antidiabética, antimicrobiana, antifúngica e antileishmaniose. As comparações foram realizadas através dos programas: chemsketch, mcule property calculator, preadmet, protox e pass online. Os resultados revelaram que apenas as moléculas lupenona e o trans-farnesol apresentaram absorção intestinal acima de 90%. Os metabólitos ácido gálico, catequina, metil-galato, quercetina e trans-farnesol seguem a regra de lipinsk em todos os seus parâmetros pré-condicionados. No que se refere a inibição enzimática, cada uma das moléculas do estudo demonstrou inibição direcionada a pelo menos duas enzimas da CYP. A lupenona foi a única molécula que se apresentou ativa contra o protozoário leishmania, além de ser promissora contra neoplasias e inflamação. A catequina e quercetina demonstraram resultados positivos no que tange a atividade antioxidante, e a maioria das substâncias do estudo em questão apresentaram capacidade de proteção mucomembranosa. Nenhuma substância demonstrou embriotoxicidade ou teratogênese, mas todas as moléculas demonstraram possuir certo nível de toxicidade em outros parâmetros de análise. Em termos farmacocinético, toxicológico e biológico, as moléculas pauferrol A, B e C foram as menos promissoras, enquanto que a lupenona, catequina e quercetina apresentaram os melhores resultados.

Referências

Ajay, A., Bermis, G. W., Murkco, M. A. Designing libraries with CNS activity. J Med Chem. 1999; 42(24), 4942- 4951.

Ames, B. N., Mccann, J., Yamasaki, E. Methods for detecting carcinogens and mutagens with the Salmonella/Mammalian-microsome mutagenicity test. Mutation Research. 1975; 31, 347-364. 10.1016/0165-1161(75)90046-1.

Balimane, P. V., Chong, S. Cell cultures-based models for intestinal permeability: a critique. Drug Discovery Today. 2005; 10 (5), 335-343. doi: 10.1016/S1359-6446(04)03354-9.

Bittencourt, P. Perfil químico, atividade anti-inflamatória e antioxidante das cascas do fruto de Libidibia ferrea. Dissertação. Mestrado em Química. Universidade Federal do Amazonas, 2017.

Carvalho, J. C. T., et al. Preliminary studies of analgesic and antiinflammatory properties of Caesalpinia ferrea crude extract. Journal of Ethnopharmacology, 53(3), 175–178, 1996. Retrieved from: http://hdl.handle.net/11449/36724.

Cavalcante, R. As plantas medicinais na Odontologia: um guia prático. 1. ed. Expressão Gráfica, Rio Branco, 2008. 21(01), 39-47, 2017. Retrieved from http://www.p eriodicos.uem.br/ojs/index.php/ArqMudi/article/view/37807.

Chaudhuri. D., et al. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signalregulated kinase ½ activation. Pharmacognosy Magazine. April-June 2015. 11, 42. doi: 10.4103/0973-1296.153078.

Cortez. A. C. Avaliação in vitro dos extratos fitoquímicos de Libidibia ferrea Martius e Senna reticulata (Willd). Irwin & Barneby (Fabales - Libidibiacea para Leishmania spp e Trichophyton spp. Dissertação. Mestrado em Patologia Tropical. Universidade Federal do Amazonas, 2004.

Costa, C. R., Olivi, P., Botta, C. M. R., Espindola, E. L. G. A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Quim Nova. 2008; 3(7):1820-1830.. doi: 10.1590/s0100-40422008000700038.

De Araújo, A. A. et al. Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. Journal of Ethnopharmacology, 156, 88–96, 2014. doi: 10.1016/j.jep.2014.07.031.

Dolabela, M. F. et al. Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, Rio de Janeiro, 12(3), 227-242. Retrieved from https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/602/0.

Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., Preissner, R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res, 42, 53- 58. 2014. doi: 10.1093/nar/gku401.

Elisabetsky, E., Wannamacher, L. The Status of Ethnopharmacology in Brazil. Journal of Ethnopharmacology, 38, 137-143, 1993. Retrieved from https://www.scielo.br/s cielo.php?script=sci_nlinks&pid=S1516-0572201500050073700018&lng=en.

Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation products:malonaldehyde and 4-hydroxynonenal, Methods Enzymol. 186 (1990) 407- 421. doi: 10.1016/0076-6879(90)86134-h.

Falcão. N. M. S. Avaliação da atividade histológica de extratos extratos vegetais contra Leishmania (Viannia) guyanensis (Kinetoplastida: Trypanosomatideae) e análises de frações semi-purificadas de Libidia ferra Martius (Fabales: Libidibiacea). Dissertação. Mestrado em ciências da Saúde. Universidade Federal da Amazônia. Manaus, 2010.

Feng, X., et al. Lupenone is a good antiinfammatory compound based on the network pharmacology. Springer Nature Switzerland AG 2019. doi: 10.1007/s11030-019-09928-5.

Filimonov, D. A., et al. The Computerized Prediction of the spectrum of Biological Activity of Chemical Compounds by their structural formula: the PASS system. Prediction of activity Spectra for substance. Eksp Klin Farmakol. 1995, 58(2), 56-62. Retrieved from https://pubmed.ncbi.nlm.nih.gov/7773095/.

Goodman, A. As Bases Farmacológicas da Terapêutica. (11a ed.), Rio de Janeiro:McGraw-Hill, 2006.

Guilhermino, L., Diamantino, T., Silva, M. C., Soares, A. M. V. M. Acute toicity test with Daphnia magna: Na alternative to mammals in the Prescreening of Chemical Toxicity? Ecotoxicol Environ Saf. 2000; 46(3), 357- 362. doi: 10.1006/eesa.2000.1916.

Hosokawa, Y., et al. Tea polyphenols inhibit IL-6 production in tumor necrosis factor superfamily 14-stimulated human gingival fibroblasts. Mol Nutr Food Res 2010 Jul; 54 Suppl 2:S151-8. Department of Conservative Dentistry, The University of Tokushima Graduate School, Tokushima, Japan. doi: 10.1002/mnfr.200900549.

Irvine, J. D., et al. MDCK (Madin-Darby canine kidney) cells: Atool for membrane permeability Screening. JPharm Sci. 1999; 88(1), 28-33. doi: 10.1021/js9803205.

Jeon, J. G., et al. Influences of trans‐trans farnesol, a membrane‐targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed‐species oral biofilms. Int. J. Oral Sci. 3, 98-106. 2011. doi:10.4248/IJOS11038.

Ji-Young, A., Yang-.Hoon, K., Jiho, M., & Jeewon, L. Accelerated degradation of dipentilphalate by Fusarium oxysporum f. sp. pisi cutinase and toxicity evaluation of its degradation products using bioluminescent bacteria. Curr. Microbiol. 52, 340-344. 2006. Retrieved from https://smbb.mx/congresos%20smbb/acapulco09/TRABAJOS/AR EA_IV/CIV-89.pdf.

Lima, S. M. A., et al. Anti-inflammatory and analgesic potential of Caesalpinia ferrea. Brazilian Journal of Pharmacognosy, 22(1), 169–175, 2011. Retrieved from https://www.scielo.br/scielo.php?pid=S0102-695X2011005000197&script=sci_abstract.

Lin, Y. L., Lin, J. K. ())-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor- kappaB. Mol Pharmacol 1997; 52, 465–472. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9281609/.

Lipinski, C. A. Lead-and drug-like compounds: the rule of five revolution. Drug Discov. Today Technol. 2004; 1(4), 337-341. doi: 10.1016/jddtec.2004.11.07.

Martins, M., et al. Inhibition of growth and aflatoxin production of Aspergillus parasiticus by guarana (Paullinia cupana Kunth) and juca (Libidibia ferrea Mart) extracts. African Journal of Biotechnology, 13(1), 7,131137, 2014. doi: 10.5897/AJB2013.13444.

Mcule propety calculator. Retrieved from https://mcule.com/.

Na, M., Kim, B. Y., Osada, H., Ahn, J. S. Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta. J Enzym Inhib Med Chem 4, 1056–1059. 2009. doi: 10.1080/14756360802693312.

Nakamura, E. S., et al. Cancer chemopreventive effects of constituents of Caesalpinia ferrea and related compounds. Cancer Letters, 177(2), 119–124, 2002. Retrieved from https://europepmc.org/article/med/11825658.

Ohno, Y. Induction of apoptosis by gallic acid in lung câncer cells. Lippincott Williams & Wilkins. Anticancer cells. Vol.10. 1999. doi: 10.1097/00001813-199910000-00008.

Oliveira, A. K. De et al. Atividade alelopática de extratos de diferentes orgãos de Caesalpinia ferrea na germinação de alface. 2012. Cienc. Rural. 42(8).doi./10.1590/S0103-84782012000800011.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [eBook]. Santa Maria. Ed. UAB / NTE / UFSM. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/1 5824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Phillips, J. C., et al. Predicting the structure of apolipoprotein AI in reconstituted high density lipoprotein disks. Biophys J. 1997; 73, 2337–46. doi: 10.1016/S0006-3495(97)78264-X.

PREADMET. ADME Prediction. Retrieved july 19, 2020, from https://preadmet.bmdrc.kr/.

Rhayanny, M., et al. Antifungal activity of medicinal plants from Northeastern Brazil. Jornal of Medicinal Plant Research. 7(40), 3008–3013, 2013. Retrieved from https://www.researchgate.net/publication/313500806_Antifungal_activity_of_medicinal_plants_from_Northeastern_Brazil.

Sadym, A., Lagunin, A., Filimonov, D., & Poroikov, V. (2003). Prediction of Biological Activity Spectra via The Internet. SAR and QSAR in environmental research. 14. 339-47. 10.1080/10629360310001623935.

Sampaio, F. C., et al. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. Journal of Ethnopharmacology, 124(2), 289–294, 2009. doi: 10.1016/j.jep.2009.04.034.

Shimamura, T., Zhao, W.-H., Hu, Z.-Q. Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infective Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Infective Agents), 6(1), 5762, 2007. doi: 10.2174/187152107779314124.

Stasi, L. C. D. I., Hiruma-lima, C. A. Plantas medicinais na Amazônia e na Mata Atlântica. São Paulo: Editora UNESP, 2002. Retrieved from https://permacoletivo.files.wo rdpress.com/2008/05/medicinais-da-amazonia-e-mata-atlantica.pdf.

Ueda, H., et al. Aldose reductase inhibitors from the fruits of Caesalpinia ferrea Mart. Phytomedicine: international journal of phytotherapy and phytopharmacology, 8(5), 377–381, 2001. doi: 10.1078/0944-7113-00043.

Wermuth, C. G. - The Practice of Medicinal Chemistry. Elsevier Academic Press, 2003.

Wu, H. M., et al. Influence of general situation, glucose tolerance and insulin tolerance for lupenone in insulin resistance of type 2 diabetes rats. Lishizhen Med Mater Med Res 5:1035–1037. 2017. doi: 10.1016/j.biopha.2018.04.019.

Yang, F., et al. The green tea polyphenol ())-epigallocatechin3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 2001; 60:528–533. Retrieved from https://pubmed.ncb i.nlm.nih.gov/11502884/.

Yazdanian, M., Glynn, S. L., Wright, J. L., Hawi, A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998; 15(9), 1490-1494. doi: 10.1023/a:1011930411574.

Downloads

Publicado

13/12/2020

Como Citar

RAMOS, L. V. R. .; BARROS, A. S. M. .; DOLABELA, M. F. Análise in silico de metabólitos ativos isolados de Libidibia ferrea Martius. Research, Society and Development, [S. l.], v. 9, n. 12, p. e7991210910, 2020. DOI: 10.33448/rsd-v9i12.10910. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10910. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências da Saúde