Abordagem cienciométrica sobre a bioatividade de briófitas: o potencial anti-insetos e as perspectivas para o século XXI

Autores

DOI:

https://doi.org/10.33448/rsd-v9i12.11241

Palavras-chave:

Atividade antifeedant; Bioprospecção de briófitas; Fitoquímica de briófitas; Inseticidas botânicos; Relação inseto-briófita.

Resumo

Este estudo realizou uma abordagem cienciométrica sobre a bioatividade de briófitas contra insetos e gerou panoramas quanto às técnicas biotecnológicas promissoras para esta linha de pesquisa, em âmbito mundial. Buscaram-se, em bases virtuais de dados, produções acadêmico-científicas correlatas à temática, no período de 2000 a 2020, e sobre as atualidades e perspectivas em briotecnologia para o controle de insetos. Os dados quantitativos foram tabulados e analisados em frequências, utilizando o software Excel 2018, sendo representados em forma de tabelas e gráficos, e as informações qualitativas em quadros. Mapearam-se 19 trabalhos (16 artigos, duas notas científicas e um capítulo de e-book) dispersos entre os continentes (exceto Antártida) e entre os anos, com maior produção asiática em 2012-2013. Identificaram-se 16 espécies de hepáticas (10 famílias botânicas) e 38 de musgos (23 famílias), cuja bioatividade foi avaliada por meio de extratos ou plantas in natura contra lepidópteros, dípteros ou coleópteros, com resultados satisfatórios para antifeedant e/ou inseticida e/ou inibidor de desenvolvimento. Os manuscritos listados foram publicados em 15 períodicos de distintos fatores de impacto, quando havia, e um foi em e-book, geralmente, tendo acesso restrito. O número total de citações desses trabalhos foi de 255, sobretudo, em pesquisas indiferentes a esta temática. Técnicas de engenharia genética, cultivo in vitro e criopreservação de briófitas são citadas como tecnologias atuais que podem dar suporte à bioprospecção de plantas avasculares em escala comercial e sustentável. No mundo existem poucas pesquisas sobre a relação inseto-briófita que podem servir para o desenvolvimento de defensivos agrícolas naturais. Diante disso, sugere-se a ampliação da bioprospecção da brioflora devido o seu potencial biotecnológico no controle de pragas aliada às técnicas biotecnológicas atuais que podem impulsionar a produção comercial e sustentável de pesticidas à base de briófitas ou contribuir com o melhoramento de plantas agrícolas.

Referências

Abay, G., Karakoç, Ö. C., Tüfekçi, A. R., Koldaş, S. & Demirtas, I. (2012). Insecticidal activity of Hypnum cupressiforme (Bryophyta) against Sitophilus granarius (Coleoptera: Curculionidae). Journal of Stored Products Research, 51, 6-10.

Abay, G., Altun, M., Karakoc, O. C., Gul, F. & Demirtas, I. (2013). Insecticidal activity of fatty acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Combinatorial Chemistry & High Throughput Screening, 16(10), 806-816.

Ainge, G. D., Gerard, P. J., Hinkley, S. F., Lorimer, S. D. & Weavers, R. T. (2001). Hodgsonox, a new class of sesquiterpene from the liverwort Lepidolaena hodgsoniae. isolation directed by insecticidal activity. The Journal of Organic Chemistry, 66(8), 2818-2821.

Ande, A. T., Wahedi, J. A. & Fatoba, P. O. (2010). Biocidal activities of some tropical moss extracts against maize stem borers. Ethnobotanical Leaflets, 14, 479-490.

Andersson, R. A., Akita, M., Pirhonen, M., Gammelgård, E. & Valkonen, J. P. (2005). Moss-Erwinia pathosystem reveals possible similarities in pathogenesis and pathogen defense in vascular and nonvascular plants. Journal of General Plant Pathology, 71(1), 23-28.

Anterola, A., Göbel, C., Hornung, E., Sellhorn, G., Feussner, I. & Grimes, H. (2009). Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways. Phytochemistry, 70, 40-52.

Arroyo-Rodríguez, V., Puyana-Eraso, J., Bernecker-Lücking, A. & Hanson, P. (2007). Observations of Geranomyia recondita (Diptera: Tipuloidea: Limoniidae) larvae feeding on epiphyllous liverworts in Costa Rica. Entomologica Americana, 114(3), 170-175.

Asakawa, Y. (1982). Terpenoids and aromatic compounds as chemosystematic indicators in Hepaticae and Anthocerotae. The Journal of the Hattori Botanical Laboratory, 53, 283-293.

________. (1995). Chemical constituents of the bryophytes. In: Progress in the Chemistry of Organic Natural Products, Springer-Verlag/Wien. 562p.

________. (1998). Biologically active compounds from bryophytes. The Journal of the Hattori Botanical Laboratory, 84, 91-104.

________. (2001). Recent advances in phytochemistry of bryophytes - acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentian and European liverworts. Phytochemistry, 56, 297-312.

________. (2004). Chemosystematics of the Hepaticae. Phytochemistry, 65(6), 623-669.

________. (2008). Liverworts-potential source of medicinal compounds. Current Pharmaceutical Design, 14, 3067-3088.

________. (2011). Bryophytes: chemical diversity, synthesis and biotechnology. A Review. Flavour and Fragrance Journal, 26(5), 318-320.

Asakawa, Y., Ludwiczuk, A. & Nagashima, F. (2012). Chemical constituents of bryophytes: bio-and chemical diversity, biological activity, and chemosystematics. Springer Science & Business Media, 95, 773p.

________. (2013). Phytochemical and biological studies of bryophytes. Phytochemistry, 91, 52-80.

Asakawa, Y., Toyota, M., Takemoto, T., Kubo, I. & Nakanishi, K. (1980). Insect antifeedant secoaromadendrane-type sesquiterpenes from Plagiochila species. Phytochemistry, 9, 2147-2154.

Ashton, N. W., Champagne, C. E. M., Weiler, T. & Verkoczy, L. K. (2000). The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytologist, 146(3), 391-402.

Athanassiou, C. G., Steenberg, T. & Kavallieratos, N. G. (2007). Insecticidal effect of diatomaceous earth applied alone or in combination with Beauveria bassiana and beta cyfluthrin against Sitophilus granarius on stored wheat. IOBC/WPRS Bulletin, 30(2), 25-36.

Bailly, N., Kirk, P. M., Bourgoin, T., Walt, R. E., Decock, W., Wever, A., ... & Penev, L. (2019). Species 2000 & ITIS Catalogue of Life. Leiden, Naturalis. Disponível em: https://www.catalogueoflife.org/col/. Acesso em: 10 jul. 2020.

Barbosa, F. S. & Carvalho, M. A. S. (2016). Análise cienciométrica da utilização de briófitas como bioindicadores. Caderno de Pesquisa, 28(1), 34-47.

Baur, A., Reski, R. & Gorr, G. (2005). Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co‐expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnology Journal, 3(3), 331-340.

Beike, A. K., Decker, E. L., Frank, W., Lang, D., Vervliet-Scheebaum, M., Zimmer, A. D. & Reski, R. (2010). Applied bryology-bryotechnology. Tropical Bryology, 31, 22-32.

Bijelović, A. & Sabovljevic, M. S. (2003). Callus induction and plant regeneration in the moss Aloina aloides (Schultz) Kindb. (Pottiaceae, Bryopsida). Archives of Biological Sciences, 55(3-4), 77-80.

Buck, W. R. & Goffinet, B. (2000). Morphology and classification of mosses. In: Shaw, A. J., & Goffinet, B. (Eds.). Bryophyte Biology. Cambridge: Cambridge University Press. 71-123.

Carter, J. B. (1976). A survey of microbial, insect and nematode parasites of Tipulidae (Diptera) larvae in north-east England. Journal of Applied Ecology, 13(1), 103-122.

Chandra, S., Chandra, D., Barh, A., Pandey, R. K. & Sharma, I. P. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of Traditional and Complementary Medicine, 7(1), 94-98.

Chen, F., Ludwiczuk, A., Wei, G., Chen, X., Crandall-Stotler, B. & Bowman, J. L. (2018). Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Critical Reviews in Plant Sciences, 37(2-3), 210-231.

Corzo, F. L., Gilabert, M., Alcaide, M. F. & Bardón, A. (2012). Toxicity of Porella chilensis sesqui-and diterpenoids against larvae of the corn pest Spodoptera frugiperda (JE Smith) (Lepidotera: Noctuidae). Neotropical Entomology, 41(5), 414-419.

Cvetić, T., Sabovljevic, M. S., Sabovljevic, A. & Grubišić, D. (2005). In vitro culture and apogamy: alternative pathway in the life cycle of the moss Amblystegium serpens (Amblystegiaceae). Archives of Biological Sciences, 57(4), 267-272.

Davidson, A. J., Harborne, J. B. & Longton, R. E. (1989). Identification of hydroxycinnamic acid and phenolic acids in Mnium hornum and Brachythecium rutablum and their possible role in protection against herbivory. The Journal of the Hattori Botanical Laboratory, 67, 415-422.

Dittrich, A. C. N. & Devarenne, T. P. (2012). Characterization of a PDK1 homologue from the moss Physcomitrella patens. Plant Physiology, 158(2), 1018-1033.

Eisemann, C. H., Donaldson, R. A., Pearson, R. D., Cadogan, L. C., Vuocolo, T. & Tellam, R. L. (1994). Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomologia Experimentalis et Applicata, 72(1), 1-10.

Fang, Y. & Zhu, R. L. (2012). Haplocladium microphyllum (Hedw.) Broth. capsules as food for Agrotis sp. (Lepidoptera) larvae. Journal of Bryology, 34(2), 108-113.

Fitzpatrick, R. B. (2003). ISI's journal citation reports on the web. Medical Reference Services Quarterly, 22(4), 45-56.

Flora do Brasil (2020). Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/. Acesso em: 15 jun. 2020.

Floyd, S. K. & Bowman, J. L. (2007). The ancestral developmental tool kit of land plants. International journal of plant sciences, 168(1), 1-35.

Frahm, J. P. (2004). Recent developments of commercial products from bryophytes. The Bryologist, 107(3), 277-283.

Frahm, J. P. & Kirchhoff, K. (2002). Antifeeding effects of bryophyte extracts from Neckera crispa and Porella obtusata against the slug Arion lusitanicus. Cryptogamie. Bryologie, 23(3), 271-275.

Gallo, D., Nakano, O., Silveira Neto, S., Carvalho, R. P., Baptista, G. C. D., Berti Filho, E.,... & Marchini, L. C. (2002). Entomologia agrícola. Piracicapa: FEALQ, 920p.

Ganesh, P. S., Salunke, R. J. & Narayan, S. D. (2019). Phytochemical study of Pterobryopsis species & Bryum coronatum and study antioxidant activity of Pterobryopsis species. Review of Research, 8(6), 1-7.

Garfield, E. (2000). Use of journal citation reports and journal performance indicators in measuring short and long term journal impact. Croatian Medical Journal, 41(4), 368-374.

Gerard, P. J., Perry, N. B., Ruf, L. D. & Foster, L. M. (1993). Antifeedant and insecticidal activity of compounds from Pseudowintera colorata (Winteraceae) on the webbing clothes moth, Tineola bisselliella (Lepidoptera: Tineidae) and the Australian carpet. Bulletin of Entomological Research, 83(4), 547-552.

Glime, J. M. Economic and ethnic uses of bryophytes (2007). In: Flora of North America Editorial Committee. (eds.), Oxford University Press, New York, 27, 14-41.

Glime, J. M. (2017a). Household and personal uses. Chapt. 1-1. In: Glime, J. M. (2017) Bryophyte Ecology. Volume 5. Uses. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: http://digitalcommons.mtu.edu/bryophyte-ecology/. Acesso em 02 jun. 2020.

__________. (2017b). Medical uses: biologically active substances. Chapt. 2-2. In: Glime, J. M. (2017). Bryophyte Ecology. Volume 5. Uses. 2-2-1. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: http://digitalcommons.mtu.edu/bryophyte-ecology/. Acesso em 02 jun. 2020.

__________. (2017c). Technological and commercial. chapt. 6-1. In: Glime, J. M. (2017). Bryophyte Ecology. Volume 5. Uses. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: http://digitalcommons.mtu.edu/bryophyte-ecology/. Acesso em 03 jun. 2020.

__________. (2017d). Nutrients. In: Glime, J. M. (2017). Bryophyte Ecology. Volume 1. 8-1-1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: https://digitalcommons.mtu.edu/bryophyte-ecology1/7. Acesso em: 05 jun. 2020.

Haines, W. P. & Renwick, J. A. A. (2009). Bryophytes as food: comparative consumption and utilization of mosses by a generalist insect herbivore. Entomologia Experimentalis et Applicata, 133, 296-306.

Hill, D. S. (1983). Agricultural insect pests of the tropics and their control. 2 ed. Cambridge: Cambridge University Press, 760p.

Hohemberger, R., Schwanke, C., de Góes Bilar, J. & Coutinho, R. X. (2019). A paleontologia na perspectiva do ensino. Terrae Didatica, 15, e019025-e019025, 1-9.

Ikram, N. K. B. K., Zhan, X., Pan, X. W., King, B. C. & Simonsen, H. T. (2015). Stable heterologous expression of biologically active terpenoids in green plant cells. Frontiers in Plant Science, 6, 129.

Krishnan, R. & Murugan, K. (2013). Evaluation of bryophyte protein-based defense against selected phytophagous insects. In: Sabu, A. & Augustine, A. (eds.). Prospects in Bioscience: Addressing the Issues, Springer, Índia, 19-32.

Krishnan, R. & Murugan, K. (2015). Insecticidal potentiality of flavonoids from cell suspension culture of Marchantia linearis Lehm. & Lindenb against Spodoptera litura F. International Journal of Applied Biology and Pharmaceutical Technology, 6(2), 23-32.

Kruijt, R. C. H., Niemann, G. J., Koster, G. & Heerma, W. (1986). Flavonoids and aromatic hydroxy acids in Lejeuneaceae Subfamily Ptychanthoideae. Cryptogamie, Bryologie, Lichenologie, 7(2), 165-171.

Kutschera, U. & Wang, Z. Y. (2012). Brassinosteroid action in flowering plants: a Darwinian Perspective. Journal of Experimental Botany, 63(10), 3511-3522.

Labbé, C., Faini, F., Villagrn, C., Coll, J. & Rycroft, D. S. (2005). Antifungal and insect antifeedant 2-Phenylethanol esters from the liverwort Balantiopsis cancellata from Chile. Journal of Agricultural and Food Chemistry, 53, 247-249.

Labbé, C., Faini, F., Villagrán, C., Coll, J. & Rycroft, D. S. (2007). Bioactive polychlorinated bibenzyls from the liverwort Riccardia polyclada. Journal of natural products, 70(12), 2019-2021.

Lang, D., Ullrich, K. K., Murat, F., Fuchs, J., Jenkins, J., Haas, F. B., … & Vives, C. (2018). The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. The Plant Journal, 93, 515-533.

Lehtonen, T. M., Akita, M., Kalkkinen, N., Ahola-Iivarinen, E., Rönnholm, G., Somervuo, P., Thelander, M. & Valkonen, J. P. T. (2009). Peroxidase de musgo de liberação rápida em defesa contra invasores fúngicos. New Phytologist, 183(2), 432-443.

León, I. P., Oliver, J. P., Castro, A., Gaggero, C., Bentancor, M. & Vidal, S. (2007). Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biology, 7(1), 1-11.

Liao, C. (1993). Chemical defenee in bryophytes with high apparency. Ecology, 75, 1-4.

Ma, J. K., Drake, P. M. & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 4(10), 794-805.

Macias-Chapula, C. A. (1998). O papel da informetria e da cienciometria e sua perspectiva nacional e internacional. Ciência da Informação, 27(2), 134-140.

Maciel-Silva, A. S. & Santos, N. D. D. (2011). Detecting herbivory in two mosses from an Atlantic Forest, Brazil. Journal of Bryology, 33(2), 140-147.

Markham, K., Chalk, T. & Stewart-Junior, C. N. (2006). Evaluation of fern and moss protein-based defenses against phytophagous insects. International Journal of Plant Sciences, 167(1), 111-117.

Ozturk, M., Gökler, İ. & Altay, V. (2018). Medicinal bryophytes distributed in Turkey. Plant and Human Health, 1, 323-348.

Perry, N. B., Burgess, E. J., Foster, L. M. & Gerard, P. J. (2003). Insect antifeedant sesquiterpene acetals from the liverwort Lepidolaena clavigera. Tetrahedron Letters, 44(8), 1651-1653.

Perry, N. B., Burgess, E. J., Foster, L. M., Gerard, P. J., Toyota, M. & Asakawa, Y. (2008). Insect antifeedant sesquiterpene acetals from the liverwort Lepidolaena clavigera. 2. Structures, artifacts, and activity. Journal of Natural Products, 71(2), 258-261.

Pinto, A. C. & Andrade, J. B. D. (1999). Fator de impacto de revistas científicas: qual o significado deste parâmetro?. Química nova, 22(3), 448-453.

Ramírez, M., Kamiya, N., Popich, S., Asakawa, Y. & Bardón, A. (2010). Insecticidal constituents from the argentine liverwort Plagiochila bursata. Chemistry & Biodiversity, 7(7), 1855-1861.

Ramírez, M., Kamiya, N., Popich, S., Asakawa, Y. & Bardón, A. (2017). Constituents of the argentine liverwort Plagiochila diversifolia and their insecticidal activities. Chemistry & Biodiversity, 14(12), 1-8.

Reski, R., Parsons, J. & Decker, E. L. (2015). Moss‐made pharmaceuticals: from bench to bedside. Plant Biotechnology Journal, 13(8), 1191-1198.

Rowntree, J. K. & Ramsay, M. M. (2009). How bryophytes came out of the cold: successful cryopreservation of threatened species. Biodiversity and Conservation, 18(5), 1413-1420.

Rowntree, J. K., Pressel, S., Ramsay, M. M., Sabovljevic, A. & Sabovljevic, M. (2011). In vitro conservation of european bryophytes. In Vitro Cellular & Developmental Biology-Plant, 47 (1), 55-64.

Ruiz-Molina, N., Villalobos-López, M. Á. & Arias-Zabala, M. (2016). Protonema suspension cultures of the medicinal moss Polytrichum juniperinum. In Vitro Cellular & Developmental Biology-Plant, 52(4), 419-426.

Sabovljevic, A., Cvetić, T. & Sabovljevic, M. (2006). Establishment and development of the Catherine’s moss Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) in vitro conditions. Archives of Biological Sciences, 58(2), 87-93.

Sabovljevic, A., Sabovljevic, M. & Jockovic, N. (2009). In vitro culture and secondary metabolite isolation in bryophytes. In: Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, Totowa, NJ. p. 117-128.

Sabovljevic, M., Bijelovic, A. & Dragicevic, I. (2003). In vitro culture of mosses: Aloina aloides (KF Schultz) Kindb., Brachythecium velutinum (Hedw.) BS & G., Ceratodon purpureus (Hedw.) Brid., Eurhynchium praelongum (Hedw.) BS & G. and Grimmia pulvinata (Hedw.) Sm. Turkish Journal of Botany, 27(6), 441-446.

Sakamoto, T. & Matsuoka, M. (2004). Generating high-yielding varieties by genetic manipulation of plant architecture. Current Opinion in Biotechnology, 15(2), 144-147.

Santos, P. L., Prando, M. B., Morando, R., Pereira, G. V. N. & Kronka, A. Z. (2013). Utilização de extratos vegetais em proteção de plantas. Enciclopédia Biosfera, 53(17), 2562-2576.

Santos, R. N. M. D. & Kobashi, N. Y. (2009). Bibliometria, cientometria, infometria: conceitos e aplicações. Pesquisa Brasileira em Ciência da Informação, 2(1), p.155-172.

Sarasan, V. (2010). Importance of in vitro technology to future conservation programmes worldwide. Kew Bulletin, 65(4), 549-554.

Segreto, R., Hassel, K., Bardal, R. & Stenøien, H. K. (2010). Desiccation tolerance and natural cold acclimation allow cryopreservation of bryophytes without pretreatment or use of cryoprotectants. The Bryologist, 113(4), 760-769.

Servettaz, C. (1913). Récherches expérimentales sur le développement et la nutrition des mousses en milieux stérilisés. Annales des sciences naturelles - Botanique et biologie végétale, 17, 111-223.

Silva, J. A. D. & Bianchi, M. D. L. P. (2001). Cientometria: a métrica da ciência. Paidéia, 11(21), 5-10.

Singh, S. & Srivastava, K. (2013). Bryophytes as green brain: unique and indispensable small creature. International Journal of Pharmaceutical Sciences Review and Research, 23(2), 28-35.

Smith, R. M., Young, M. R. & Marquiss, M. (2001). Bryophyte use by an insect herbivore: does the crane‐fly Tipula montana select food to maximise growth?. Ecological Entomology, 26(1), 83-90.

Todd, C. M. (1993). The feeding ecology of certain larvae in the genus Tipula (Tipulidae, Diptera), with special reference to their utilisation of bryophytes. Durham theses, Durham University. 241p.

Toyota, M., Koyama, H. & Asakawa, Y. (1997). Volatile components of the liverworts Archilejeunea olivacea, Cheilolejeunea imbricata and Leptolejeunea elliptica. Phytochemistry, 44(7), 1261-1264.

Trópicos (2020). Missouri Botanical Garden. Disponível em: http://www.tropicos.org. Acesso em: 15 jun. 2020.

Venturoso, L. R., Bacchi, L. M. A., Gavassoni, W. L., Conus, L. A., Pontim, B. C. A. & Bergamin, A. C. (2011). Atividade antifúngica de extratos vegetais sobre o desenvolvimento de fitopatógenos. Summa Phytopathologica, 37(1), 18-23.

Villalobos, M. J. P. (1996). Plaguicidas naturales de origen vegetal: estado actual de la investigacion. Ministerio de Agricultura, Pesca Y Alimentacion. Madrid: Monografias INIA. 35p.

Warthen-Júnior, J. D., Redfern, R. E., Mills-Júnior, G. D. & Uebel, E. C. (1982). Antifeedant screening of thirty‐nine local plants with fall armyworm larvae. Journal of Environmental Science & Health Part A, 17(6), 885-895.

Wood, A. J., Oliver, M. J. & Cove, D. J. (2000). Bryophytes como sistemas modelo. The Bryologist, 103(1), 128-133.

Xie, C. F. & Lou, H. X. (2009). Secondary Metabolites in Bryophytes: an Ecological Aspect. Chemistry & Biodiversity, 9, 303-312.

Zurich, E. T. H. (2009). Biotechnology: engineered moss can produce human proteins. ScienceDaily. Disponível em: http://www.sciencedaily.com /releases/2009/05/090510200001.htm. Acesso em: 10 jun. 2020.

Downloads

Publicado

30/12/2020

Como Citar

ALVES, R. J. M.; MIRANDA, T. G.; TAVARES-MARTINS, A. C. C. Abordagem cienciométrica sobre a bioatividade de briófitas: o potencial anti-insetos e as perspectivas para o século XXI. Research, Society and Development, [S. l.], v. 9, n. 12, p. e47591211241, 2020. DOI: 10.33448/rsd-v9i12.11241. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11241. Acesso em: 23 nov. 2024.

Edição

Seção

Artigos de Revisão