Amidos de batata-doce de polpas branca e laranja modificados por autoclave
DOI:
https://doi.org/10.33448/rsd-v10i1.11620Palavras-chave:
Ipomoea batatas L; RVA; DSC; Solubilidade e absorção em água; Microscopia eletrônica de varredura.Resumo
O objetivo desta pesquisa, utilizando um Delineamento Central Composto Rotacional, foi avaliar se a umidade e o tempo de exposição a uma temperatura de 121 ° C e pressão de 1.1 kgf. cm2 em autoclave seriam capazes de modificar as propriedades morfológicas, térmicas, funcionais e de pasta dos Amidos de Batata Doce de polpas de cor Laranja (ABDL) e Branca (ABDB). A modificação demonstrou aumentar: a absorção a 60ºC do amido ABDB e a solubilidade a 60ºC do ABDL, o setback do ABDB, a viscosidade final do ABDL e a entalpia para ambos, além de reduzir o breakdown do ABDL. As micrografias dos amidos modificados mostraram rachaduras na superfície dos grânulos e pré-gelatinização do ABDL, confirmando que a umidade e o tempo de exposição afetaram suas propriedades morfológicas, térmicas, funcionais e de pasta. Portanto, devido ao uso promissor, os autores sugerem pesquisas futuras com ABDL e ABDBR autoclavados para testar aplicações tecnológicas.
Referências
Abraham, T. E. (1993). Stabilization of Paste Viscosity of Cassava Starch by Heat Moisture Treatment. 45(4), 131-135. doi:10.1002/star.19930450404
Agama-Acevedo, E., Pacheco-Vargas, G., Bello-Pérez, L. A., & Alvarez-Ramirez, J. (2018). Effect of drying method and hydrothermal treatment of pregelatinized Hylon VII starch on resistant starch content. Food Hydrocolloids, 77, 817-824. doi:https://doi.org/10.1016/j.foodhyd.2017.11.025
Akanbi, C. T., Kadiri, O., & Gbadamosi, S. O. (2019). Kinetics of starch digestion in native and modified sweetpotato starches from an orange fleshed cultivar. International Journal of Biological Macromolecules, 134, 946-953. doi:https://doi.org/10.1016/j.ijbiomac.2019.05.035
Ashwar, B. A., Gani, A., Wani, I. A., Shah, A., Masoodi, F. A., & Saxena, D. C. (2016). Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids, 2016 v.56, pp. 108-117. doi:10.1016/j.foodhyd.2015.12.004
Astuti, R. M., Widaningrum, Asiah, N., Setyowati, A., & Fitriawati, R. (2018). Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinacea L) starch. Food Hydrocolloids, 81, 23-30. doi:https://doi.org/10.1016/j.foodhyd.2018.02.029
Babu, A. S., & Parimalavalli, R. (2013). Effect of Autoclaving on Functional, Chemical, Pasting and Morphological Properties of Sweet Potato Starch. Journal of Root Crops, 39(1), 78-83.
Babu, A. S., & Parimalavalli, R. (2014). Effect of Autoclaving on Functional, Chemical, Pasting and Morphological Properties of. Journal of Root Crops, 39(1), 78-83.
Bello-Pérez, L. A., Sánchez-Rivera, M. M., Núñez-Santiago, C., Rodríguez-Ambriz, S. L., & Román-Gutierrez, A. D. (2010). Effect of the pearled in the isolation and the morphological, physicochemical and rheological characteristics of barley starch. Carbohydr. Polym., 81(1), 63-69. doi:https://doi.org/10.1016/j.carbpol.2010.01.056
Bento, J. A. C., Ferreira, K. C., de Oliveira, A. L. M., Lião, L. M., Caliari, M., & Júnior, M. S. S. (2019). Extraction, characterization and technological properties of white garland-lily starch. International Journal of Biological Macromolecules, 135, 422-428. doi:https://doi.org/10.1016/j.ijbiomac.2019.05.141
Bento, J. A. C., Fidelis, M. C., de Souza Neto, M. A., Lião, L. M., Caliari, M., & Soares Júnior, M. S. (2020). Physicochemical, structural, and thermal properties of “batata-de-teiú” starch. International Journal of Biological Macromolecules, 145, 332-340. doi:https://doi.org/10.1016/j.ijbiomac.2019.12.208
Carballo Pérez, I., Mu, T.-H., Zhang, M., & Ji, L.-L. (2018). Effect of high hydrostatic pressure to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread. International Journal of Food Science & Technology, 53(4), 1087-1094. doi:10.1111/ijfs.13687
Chung, H.-J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate polymers, 75(3), 436-447. doi:https://doi.org/10.1016/j.carbpol.2008.08.006
Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416-422. doi:https://doi.org/10.1016/j.ijbiomac.2016.07.040
Fideles, M. C., Bento, J. A. C., Ferreira, K. C., de Oliveira, A. L. M., Caliari, M., & Soares, M. S., Jr. (2019). Physicochemical and technological characteristics of arrowroot flour modified by ultrasound and low-temperature heat treatment/Caracteristicas fisico-quimicas e tecnologicas da farinha de araruta modificada por ultrassom e por tratamento termico de baixa umidade. Ciência Rural, 49, NA.
Guo, J., Liu, L., Lian, X., Li, L., & Wu, H. (2014). The properties of different cultivars of Jinhai sweet potato starches in China. International Journal of Biological Macromolecules, 67, 1-6. doi:https://doi.org/10.1016/j.ijbiomac.2014.03.002
Huang, T.-T., Zhou, D.-N., Jin, Z.-Y., Xu, X.-M., & Chen, H.-Q. (2016). Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54, 202-210. doi:https://doi.org/10.1016/j.foodhyd.2015.10.002
Jamir, K., & Kottapalli, S. (2017). Isolation, characterization and comparative study of starches from selected Zingiberaceae species, a non-conventional source. Food Hydrocoll., 72. doi:https://doi.org/10.1016/j.foodhyd.2017.06.004
Jyothi, A. N., Sajeev, M. S., & Sreekumar, J. N. (2010). Hydrothermal Modifications of Tropical Tuber Starches. 1. Effect of Heat-Moisture Treatment on the Physicochemical, Rheological and Gelatinization Characteristics. Starch - Stärke, 62(1), 28-40. doi:10.1002/star.200900191
Lee, B. H., & Lee, Y. T. (2017). Physicochemical and structural properties of different colored sweet potato starches. Starch‐Stärke, 69(3-4), 1600001. doi:10.1002/star.201600001
Li, H., Gui, Y., Li, J., Zhu, Y., Cui, B., & Guo, L. (2020). Modification of rice starch using a combination of autoclaving and triple enzyme treatment: Structural, physicochemical and digestibility properties. International Journal of Biological Macromolecules, 144, 500-508. doi:https://doi.org/10.1016/j.ijbiomac.2019.12.112
Li, H., Yu, L., Yu, W., Li, H., & Gilbert, R. (2019). Autoclaved rice: The textural property and its relation to starch leaching and the molecular structure of leached starch. Food chemistry, 283, 199-205. doi:https://doi.org/10.1016/j.foodchem.2019.01.030
Li, X., Chen, W., Chang, Q., Zhang, Y., Zheng, B., & Zeng, H. (2020). Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: A comparative study. International Journal of Biological Macromolecules, 144, 67-75. doi:https://doi.org/10.1016/j.ijbiomac.2019.12.047
Narpinder, S., Amritpal, K., Khetan, S., & Rajarathnam, E. (2013). Potato: production, composition and starch processing. In (pp. 23-48). Beverly: Scrivener Publishing LLC.
Paixão e Silva, G. d. L., Bento, J. A. C., Ribeiro, G. O., Lião, L. M., Soares Júnior, M. S., & Caliari, M. (2020). Application potential and technological properties of colored sweet potato starches. Starch - Stärke, in press. doi:10.1002/star.202000100
Pereira, A. S., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671.
Shah, A., Masoodi, F. A., Gani, A., & Ashwar, B. A. (2016). In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food chemistry, 212, 749-758. doi:https://doi.org/10.1016/j.foodchem.2016.06.019
Song, M.-R., Choi, S.-H., Kim, H.-S., Kim, B.-Y., & Baik, M.-Y. (2015). Efficiency of High Hydrostatic Pressure in Preparing Amorphous Granular Starches. Starch - Stärke, 67. doi:10.1002/star.201500002
Trung, P. T. B., Ngoc, L. B. B., Hoa, P. N., Tien, N. N. T., & Hung, P. V. (2017). Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecules, 105, 1071-1078. doi:https://doi.org/10.1016/j.ijbiomac.2017.07.131
Wang, H., Yang, Q., Gao, L., Gong, X., Qu, Y., & Feng, B. (2020). Functional and physicochemical properties of flours and starches from different tuber crops. International Journal of Biological Macromolecules, 148, 324-332. doi:https://doi.org/10.1016/j.ijbiomac.2020.01.146
Wani, I. A., Sogi, D. S., Wani, A. A., Gill, B. S., & Shivhare, U. S. (2010). Physico-chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. International Journal of Food Science & Technology, 45(10), 2176-2185. doi:10.1111/j.1365-2621.2010.02379.x
Zavareze, E. d. R., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate polymers, 83(2), 317-328. doi:https://doi.org/10.1016/j.carbpol.2010.08.064
Zheng, J., Li, Q., Hu, A., Yang, L., Lu, J., Zhang, X., & Lin, Q. (2013). Dual‐frequency ultrasound effect on structure and properties of sweet potato starch. Starch‐Stärke, 65(7‐8), 621-627. doi:10.1002/star.201200197
Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology, 43(1), 1-17. doi:https://doi.org/10.1016/j.tifs.2014.12.008
Zuo, Y. Y. J., Hébraud, P., Hemar, Y., & Ashokkumar, M. (2012). Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry, 19(3), 421-426. doi:https://doi.org/10.1016/j.ultsonch.2011.08.006
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Giselle de Lima Paixão e Silva ; Juliana Aparecida Correia Bento ; Luiz Artur Mendes Bataus; Manoel Soares Soares Júnior; Márcio Caliari; Menandes Alves de Souza Neto; Karen Carvalho Ferreira; Ana Lázara Matos de Oliveira; Jhonathan Raphael Andrade
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.