Inferência Bayesiana aplicada em modelo de regressão linear e modelo espacial: Uma abordagem sobre a estrutura de covariância entre os dados geoestatísticos

Autores

DOI:

https://doi.org/10.33448/rsd-v10i1.11890

Palavras-chave:

Estatística Espacial; Geoestatística; Inferência Bayesiana; Modelo de Regressão Linear; Métodos de Monte Carlo via cadeias de Markov; DIC; Erro médio quadrático.

Resumo

Modelos estatísticos servem para descrever o comportamento probabilístico de fenômenos de interesse permitindo analisá-los, prevê-los e tomar decisões pertinentes. Modelos de regressão linear são muito utilizados em diversas áreas. Esses modelos possuem suposições fortes como independência entre os erros que em geral não se ajustam a dados espaciais, já que estes dados permitem que haja dependência na estrutura de covariância dos erros. Portanto, modelos de regressão linear podem ser comparados com modelos espaciais. Dados espaciais podem ser divididos em 3 tipos: padrão de pontos, dados de área e dados geoestatísticos. Esse trabalho visa avaliar modelos de regressão linear inicialmente e posteriormente compará-los aos modelos espaciais para dados geoestatísticos através da função de covariância exponencial. Parâmetros desconhecidos são encontrados nesses modelos e a inferência adotada nesse trabalho é a Bayesiana por permitir que a crença inicial do especialista seja incorporada a modelagem, aumentando a quantidade de informação avaliada e melhorando portanto as estimativas. Ao ajustar os modelos sob conjuntos de dados simulados é possível verificar a capacidade dos ajustes recuperarem os verdadeiros valores dos parâmetros e selecionar o verdadeiro modelo. O presente artigo é resultado do interesse em analisar o ajuste do modelo de regressão linear com conjunto de dados artificiais com dependência espacial e comparar esse ao ajuste do modelo espacial, mais especificamente, a partir de dados geoestatísticos.

Referências

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory(1st ed.). Wiley.

Borgoni, R., & Billari, F. C. (2003). Bayesian spatial analysis of demographic survey data: An application to contraceptive use at first sexual intercourse. Demographic Research,8, 61-92.

Casella, G., & Berger, R. (2002). Statistical inference. Thomson Learning.

Cressie, N. (1993). Statistics for spatial data. J. Wiley.

Câmara, G., & Ortiz, M. (1998). Sistemas de informações geográficas para aplicações ambientais e cadastrais: uma visão geral.In: CONGRESSOBRASILEIRO DE ENGENHARIA AGRÍCOLA.,27, 59-82.

Dawn B. Woodard, R. L. W., & O’Connell, M. A. (2010). Spatial inference of nitrate concentrations in groundwater. Journal of Agricultural, Biological, and Environmental Statistics,15(2), 209-227.

Ehlers, R. S. (2003). Introdução a inferência bayesiana [Computer software manual]. Curitiba. Retrieved from<http://www.leg.ufpr.br/~paulojus/CE227/ce227.pdf>

Gamerman, D. (2004). Markov chain monte carlo: Stochastic simulation for bayesian inference (1st ed.). Chapman and Hall/CRC.

Gamerman, D., & Lopes, H. F. (2006). Markov chain monte carlo: Stochastics imulation for bayesian inference (2nd ed.). Chapman and Hall/CRC.

Gelfand, A. E., & Smith, A. F. M. (1990). amping-based approaches to calculating marginal densities. Journal of the American Statistical Association,85(410),398–409.

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, andthe bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence,57(6), 721–741.

Hastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika,57, 97–109.

Krige, D. (1951). A statistical approaches to some basic mine valuation problemson the witwatersrand. Journal of the Chemical, Metallurgical and Mining Societyof South Africa,52, 119-139.

Macera, M. H. C. (2011). Uso dos métodos clássico e bayesiano para os modelosnão-lineares heterocedásticos simétricos (Ciências de Computação e MatemáticaComputacional). Universidade de São Paulo, São Carlos.

Metropolis, N. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics,21(6), 1087–1092.

Migon, H., Gamerman, D., & Louzada, F. (2014). Statistical inference: An integrated approach, second edition. Taylor & Francis.

Morettin, P. A., & de O. Bussab, W. (2010). Estatistica básica(3rd ed.). Editora Saraiva.

O’Hagan, A., & Kendall. (1994). Bayesian inference(1st ed.). Edward Arnold.

Paulino, C. D., Amaral Turkman, M. A., Murteira, B., & Silva, G. L. (2018). Estatística bayesiana(2a ed.). Lisboa: Fundação Calouste Gulbenkian.

Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

R Core Team. (2019). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from<https://www.R-project.org/>

Robert, C. P., & Casella, G. (2004). Monte carlo statistical methods. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Roberts, G. O., Gelman, A., & Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk metropolis algorithms. The Annals of Applied Probability,7, 110-120.

Roberts, G. O., & Rosenthal, J. S. (2001). Optimal scaling for various metropolis-hastings algorithms. Statistical Science,16, 351-367.

Smith, R. L. (1996). Estimating nonstationary spatial correlations. Relatório técnico, Cambridge University, UK.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & der Linde, A. V. (2002). Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc.(64),583-639.

Weisberg, S. (2014). Applied linear regression(4th ed.). Hoboken NJ: Wiley.

Downloads

Publicado

14/01/2021

Como Citar

BRAGANÇA, R. G. Inferência Bayesiana aplicada em modelo de regressão linear e modelo espacial: Uma abordagem sobre a estrutura de covariância entre os dados geoestatísticos. Research, Society and Development, [S. l.], v. 10, n. 1, p. e31910111890, 2021. DOI: 10.33448/rsd-v10i1.11890. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11890. Acesso em: 15 jan. 2025.

Edição

Seção

Ciências Exatas e da Terra