Influência de materiais recicláveis e vinhaça da cana de açúcar na resistência mecânica de tijolos ecológicos

Autores

DOI:

https://doi.org/10.33448/rsd-v10i2.12911

Palavras-chave:

Adobe; Argissolo; Latossolo; PET; EPS; Compressão mecânica.

Resumo

A indústria da construção civil utiliza abundante matéria-prima não renovável, consome grande quantidade de energia na extração de insumos, na produção dos materiais, no transporte de ambos e gera uma infinidade de entulho na execução das obras. Tijolos ecológicos podem ser fabricados utilizando resíduos urbanos atóxicos, incluindo os da construção civil. Este trabalho objetivou descrever o processo de fabricação e a caracterização estrutural de tijolos ecológicos utilizando como matriz o argissolo e o latossolo, e como aglomerante, materiais recicláveis da coleta seletiva urbana (PET e EPS), reboco descartado pela construção civil e a vinhaça da indústria canavieira. Foram realizados estudos do processo de fabricação de protótipos de tijolos ecológicos e da caracterização mecânica: absorção de água, densidade seca, resistência à compressão mecânica, comportamento tensão/deformação, comportamento massa/resistência à compressão. Os resultados mostraram que a inclusão acima de excessiva de materiais recicláveis na fabricação dos adobes promove o aumento da resistência mecânica, mas também aumenta a absorção de água de forma a não atender a regulamentação da norma brasileira que dispõe sobre o tijolo maciço de solo-cimento. Os tijolos mais promissores foram os fabricados com 55 e 39,5 % de materiais recicláveis para o argissolo e o latossolo respectivamente. 

Referências

AASTHO. (2008). Mechanistic-Empirical Pavement Design Guide. Washington, DC: American Association of State Highway and Transportation Officials.

ABCP. (2000). Fabricação de tijolos de solo-cimento com a utilização de prensas manuais. São Paulo: Associação Brasileira de Cimento Portland.

ABNT NBR-8492. (2013). Soil-cement brick — Dimensional analysis, compressive strength determination and water absorption — Test method. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT NBR-13292. (1995). Soil - Determination of the coefficient of permeability of granular soil by constant-head - Method of test. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT NBR-6459. (2017). Soil- Liquid limit determination. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT NBR-7180. (2016). Soil — Plasticity limit determination. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT NBR-7182. (2020). Soil - Compaction test. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT NBR-8491. (2012). Soil-cement brick — Requirements. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT NM-248. (2003). Aggregates - Sieve analysis of fine and coarse aggregates. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

Agopyan, V., Savastano, H., John, V. M., & Cincotto, M. A. (2005). Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 27(5), 527–536. https://doi.org/10.1016/j.cemconcomp.2004.09.004

Agopyan, V., & John, V. M. (2016). O desafio da sustentabilidade na construção civil (3th ed., Vol. 5). São Paulo: Blucher.

Ajayi, B. (2017). An assessment of environmental and sustainability provisions in trade agreements. University of Waterloo, Ontario, Canada. https://doi.org/10.1177/0309133309346882

Ali, Y. A. Y., Fahmy, E. H. A., AbouZeid, M. N., Shaheen, Y. B. I., & Mooty, M. N. A. (2020). Use of expanded polystyrene in developing solid brick masonry units. Construction and Building Materials, 242, 118109. https://doi.org/10.1016/j.conbuildmat.2020.118109

Barbosa, M. I. R., Amorim, L. V., & Ferreira, H. C. (2007). Compostos poliméricos como aditivos de argilas bentoníticas. Cerâmica, 53(328), 354–360. https://doi.org/10.1590/S0366-69132007000400004

Brito, L. C., & Paranhos, H. da S. (2017). Estabilização de Solos. Revista Científica Multidisciplinar Núcleo Do Conhecimento, 1(2), 425–438.

Callister Jr., W. D., & Rethwisch, D. G. (2012). Ciência e engenharia de materiais: Uma introdução. (Sergio Murilo S. Soares, Trans.) (V.8). Rio de Janeiro: John Wiley & Soons.

Construction & Demolition Recycling Association. (2020). Collaborate. Innovate. Advance. Recuperado de: https://cdrecycling.org/about/

Conselho Nacional do Meio Ambiente, C. Resolução CONAMA no 307, de 5 de julho de 2002. Alterada pela Resolução no 348/04 (alterado o inciso IV do art. 3o). Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil (2002). Brasil. Recuperado de https://www.mma.gov.br/estruturas/a3p/_arquivos/36_09102008030504.pdf

Corazza, R. I., & Salles-Filho, S. (2014). Vinasse treatment in Brazil from 1970s to 1990s: a lock-in case study into the ethanol agroindustry. Análise Econômica, 32(62). https://doi.org/10.22456/2176-5456.20928

Cordeiro, L. de N. P., Masuero, A. B., Molin, D. C. C. D., Souza, P. S. L., & Paes, I. N. L. (2017). Influence of the mixing processes in concrete with aggregates coarse recycled concrete. Ambiente Construído, 17(3), 255–265. https://doi.org/10.1590/s1678-86212017000300174

Fabbri, A., & Morel, J. C. (2020). Earthen materials and constructions. In Nonconventional and Vernacular Construction Materials (pp. 375–401). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102704-2.00014-7

Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). A geotechnical perspective of raw earth building. Acta Geotechnica, 12(3), 463–478. https://doi.org/10.1007/s11440-016-0521-1

Harries, K. A., & Sharma, B. (2020). Nonconventional and vernacular construction materials: Characterisation, properties and applications (Vol. 2). Duxford, United Kingdom: Elsevier Ltd. Retrieved from https://books.google.com.br/books?id=geu-DwAAQBAJ&pg=PA399&lpg=PA399&dq=Lei,+X.,+et+al.,+2014.+A+thermo-chemo-electro-mechanical+framework+of+unsaturated+expansive+clays.+Comput.+Geotech.+62,+175e192&source=bl&ots=A0FOPMEXAM&sig=ACfU3U0esjYSTsm1UvGwyts4NS

Huarachi, D. A. R., Gonçalves, G., de Francisco, A. C., Canteri, M. H. G., & Piekarski, C. M. (2020). Life cycle assessment of traditional and alternative bricks: A review. Environmental Impact Assessment Review, 80 (September 2019), 106335. https://doi.org/10.1016/j.eiar.2019.106335

Klang, A., Vikman, P.-Å., & Brattebø, H. (2003). Sustainable management of demolition waste—an integrated model for the evaluation of environmental, economic and social aspects. Resources, Conservation and Recycling, 38(4), 317–334. https://doi.org/10.1016/S0921-3449(02)00167-2

Lima Jr., H. C., Willrich, F. L., & Barbosa, N. P. (2003). Structural behavior of load bearing brick walls of soil-cement with the addition of ground ceramic waste. Revista Brasileira de Engenharia Agrícola e Ambiental, 7(3), 552–558.

Nadoushani, Z. S. M., & Akbarnezhad, A. (2015). Effects of structural system on the life cycle carbon footprint of buildings. Energy and Buildings, 102, 337–346. https://doi.org/10.1016/j.enbuild.2015.05.044

Oh, B. K., Park, J. S., Choi, S. W., & Park, H. S. (2016). Design model for analysis of relationships among CO2 emissions, cost, and structural parameters in green building construction with composite columns. Energy and Buildings, 118, 301–315. https://doi.org/10.1016/j.enbuild.2016.03.015

Rolim, M. M. (1996). Avaliaçao físico-mecânica do material solo-vinhaça concentrada e sua utilizaçao para fins de fabricaçao de tijolos. Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.

Santos, M. P. dos. (2009). Fabricação de solo-cimento com adição de resíduos de madeira provenientes da construção civil. Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

Seixas, F. L., Gimenes, M. L., & Fernandes-Machado, N. R. C. (2016). Treatment of vinasse by adsorption on carbon from sugar cane bagasse. Química Nova, XY(200), 1–8. https://doi.org/10.5935/0100-4042.20160013

Sena, R. J. De, Laursen, A., & Silva, J. S. da. (2017). Mechanical evaluation of solid soil-cement brick containing PET residue. Veredas MPCT, 10(1), 69–83.

Silva, S. R. da. (2005). Tijolos de solo cimento reforçado com serragem de madeira. Universidade Federal de Minas Gerais, Belo Horizonte, MG.

Silva Filho, A. F. e. (2005). Gestão dos resíduos sólidos das contruções prediais na cidade do Natal-RN. Universidade Federal do Rio Grande do Norte, Natal, Brasil. Retrieved from http://repositorio.ufrn.br:8080/jspui/handle/123456789/14974

Soares, A. P., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM.

Valenciano, M. D. C. M., & Freire, W. J. (2004). Características físicas e mecânicas de misturas de solo, cimento e cinzas de bagaço de cana-de-açúcar. Eng. Agríc, 24(3), 484–492. https://doi.org/10.1002/0471478768.ch13

Walker, P. J. (1994). Properties of stabilized soil blocks. In 5th International Seminar on Structural Mansory for Developing Countries. Florianópolis, SC, Brasil.

Zhang, Z., Wong, Y. C., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152

Downloads

Publicado

28/02/2021

Como Citar

TOSELLO, M. E. C.; TAMASHIRO, J. R.; SILVA, L. H. P. .; ANTUNES, P. A.; SIMÕES, R. D. Influência de materiais recicláveis e vinhaça da cana de açúcar na resistência mecânica de tijolos ecológicos. Research, Society and Development, [S. l.], v. 10, n. 2, p. e56910212911, 2021. DOI: 10.33448/rsd-v10i2.12911. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12911. Acesso em: 24 nov. 2024.

Edição

Seção

Engenharias