Efeito de um vitrocerâmico de whitlockite na oclusão dos túbulos dentinários para tratamento da hipersensibilidade dentinária

Autores

DOI:

https://doi.org/10.33448/rsd-v10i3.13161

Palavras-chave:

Biomateriais; Vitrocerâmica bioativa; Remineralização da dentina; Sistema 3CaO.P2O5-SiO2-MgO; Hipersensibilidade dentinária.

Resumo

Dentin hypersensitivity (DH) is characterized by short and sharp pain in response to external stimuli and can be treated by occluding dentinal tubules. In this study, a whitlockite (Mg-substituted tricalcium phosphate phase) glass-ceramic based on the 3CaO.P2O5-SiO2-MgO-system and its parent glass were evaluated on their effectiveness in treating DH. A bioactive glass with nominal composition 52.75(3CaO.P2O5)–30SiO2–17.25MgO (wt.%) was double-stage heat-treated at 700 °C and 775 °C for 4 h. Therefore, third molar human teeth were demineralized and randomly distributed into groups: NT – negative control (no treatment), BG – positive control (treated with Bioglass®45S5), GL – treatment with parent glass, and WGC – treatment with whitlockite glass-ceramic. Then, all the dentin samples were immersed in artificial saliva and stored for 7 days at 37 ºC. The biomaterials were evaluated by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The dentin samples were analyzed by ATR-FTIR, to identify and quantify compositional variations on dentin surface, and by SEM. XRD identified whitlockite as the crystalline phase of GC and its presence leads to the formation of blunt particles, as shown by SEM images. ATR-FTIR analysis confirmed the formation of apatite compounds on the surface of all sample from BG, GL and WGC which was corroborated by the occlusion of dentinal tubules, as demonstrated by SEM images. Furthermore, the relative infrared peak intensities were compared statistically. Regarding surface reactivity by the semi-quantitative FTIR analysis, whitlockite GC demonstrated similarity to Bioglass®45S5 indicating that this material is promising for treating DH.

Referências

Addy, M. (2002). Dentine hypersensitivity: new perspectives on an old problem. International Dental Journal, 52, 367-375.

Ana, P. A., Tabchoury, C. P., Cury, J. A., & Zezell, D. M. (2012). Effect of Er,Cr:YSGG laser and professional fluoride application on enamel demineralization and on fluoride retention. Caries Research, 46(5), 441-51.

Apel, E., Deubener, J., Bernard, A., Holand, M., Muller, R., Kappert, H., Rheinberger, V., & Holland W. (2008). Phenomena and mechanisms of crack propagation in glass-ceramics. Journal of Mechanical Behavior of Biomedical Material, 1(4), 313-325.

Bakry, A .S., Sadr, A., Takahashi, H., Otsuki, M., & Tagami, J. (2007). Analysis of Er:YAG Laser Dentin using Attenuated Total Reflectance Fourie Transform Infrared and X-ray Diffaction Techniques. Dental Material Journal, 26(3), 422-428.

Bakry, A .S., Takahashi, H., & Otsuki, M. (2011). CO2 Laser Improves 45S5 Bioglass Interaction with Dentin. Journal of Dental Research, 90(2), 246-250.

Bamise, C. T., & Esan, T. A. (2011). Mechanisms and treatment approaches of dentine hypersensitivity: a literature review. Oral Health Preventive Dentistry, 9(4), 353-67.

Blatz, M.B. (2012). Laser Therapy may be Better Than Topical Desensitizing Agents for Treating Dentin Hypersensitivity. Journal of Evid-Based Dental Practice, 12(2), 69-70.

Chatzistavrou, X., Rao, R. R., & Caldwell, D. J. (2016). Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry. Journal of Non-Crystalline Solids, 432(15A), 143-149.

Crovace, M. C., Souza, M. T., & Chinaglia, C. R. (2016). Biosilicate® - A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids, 432, 90-110.

Cunha, S. R., Garófalo, S.A., Scaramucci, T., Zezell, D. M., & Aranha, A. C. C. (2017). The association between Nd:YAG laser and desensitizing dentifrices for the treatment of dentin hypersensitivity. Lasers Medicine Science, 32, 873-880.

Daguano, J. K. M. F., Rogero, S. O., Crovace, M. C., Peitl, O., Strecker, K., & Santos, C. (2013). Bioactivity and Cytotoxicity of Glass and Glass Ceramics Based on the 3CaO.P2O5–SiO2-MgO System. Journal of Materials Science: Materials in Medicine, 24, 2171-2180.

Daguano, J. K. M. F., Strecker, K., Ziemath, E. C., Rogero, S. O., Fernandes, M. H. V., & Santos, C. (2012). Effect of partial crystallization on the mechanical properties and cytotoxicity of bioactive glass from the 3CaO.P2O5-SiO2-MgO system. Journal of Mechanical Behavior of Biomedical Material, 14, 78-88.

Farooq, I., Moheet, I. A., & AlShwaimi, E. (2015). In vitro dentin tubule occlusion and remineralization competence of various toothpastes. Archives of Oral Biology, 60, 1246-1253.

Fornaini, C., Brulat-Bouchard, N., Medioni, E., Zhang, S., Rocca, J., Merigo, E. (2020) Nd:YAP laser in the treatment of dentinal hypersensitivity: An ex vivo study. Journal of Photochemistry and Photobiology B: Biology, 203, 111740.

Gallob, J., Ling, M. R., Amini, P., Patil, A., Atassi, M. (2019). Efficacy of a dissolvable strip with calcium sodium phosphosilicate (NovaMin®) in providing rapid dentine hypersensitivity relief. Journal of Dentistry: X, 2, 100003.

Gondim, A. L. M. F., Barbosa, G. A. S., Dantas, W. R. M., Dantas, E. M., Oliveira, H. T. R. de ., Almeida Neto, L. F. de, Marcelino, K. P., & Pagnoncelli, R. M. . (2020). Effect of laser therapy on osteogenesis in skullcap defects filled with α-TCP cement and β-TCP/HA granules: animal model. Research, Society and Development, 9(10), e6889109061.

Hench, L.L., & Jones, J.R. (2015). Bioactive Glasses: Frontiers and Challenges. Frontiers in Bioengineering Biotechnology, 3, 194.

Huang, M., Hill, R.G., & Rawlinson, S.C.F. (2017). Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dental Materials, 33(5), 543-552.

Kim, J., & Park, J. Dentin hypersensitivity and emerging concepts for treatments. (2017). Journal of Oral Bioscience, 59, 211-217.

Kulal, R., Jayanti, I., Sambashivaiah, S., & Bilchodmath, S. (2016). An In-vitro Comparison of Nano Hydroxyapatite, Novamin and Proargin Desensitizing Toothpastes - A SEM Study. Journal of Clinical and Diagnostic Research, 10(10), ZC51-ZC54.

Ma, Q., Wang, T., Meng, Q., Xu, X., Wu, H., Xu, D., & Chen, Y. (2017). Comparison of in vitro dentinal tubule occluding efficacy of two different methods using a nano-scaled bioactive glass-containing desensitising agent. Journal of Dentistry, 60, 63–69.

Mantzourania, M., & Sharma, D. (2013). Dentine sensitivity: Past, present and future Journal of Dentistry, 41(4), s3-s17.

Miguez-Pacheco, V., Hench, L.L., & Boccaccini, A.R. (2015). Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomaterialia, 13, 1-15.

Mitchell, J.C., Musanje, L., & Ferracane, J.L. (2011). Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dental Material, 27, 386-393.

Montazerian, M., & Zannoto E.D. (2016). History and trends of bioactive glass-ceramics. Journal of Biomedical Material Research Part A, 104, 1231-1249.

Moreira, M. M., Silva, L. R. R., Mendes, T. A. D, Santiago, S. L., Mazzetto, S. E., Lomonaco, D., & Feitosa, V. P. (2018). Synthesis and characterization of a new methacrylate monomer derived from the cashew nutshell liquid (CNSL) and its effect on dentinal tubular occlusion. Dental Material, 34, 1144-1153.

Nascimento, M. E. S., Júnior, J. R. L. S., Lima, M. V. A., Almeida, N. M. S., Hora, S.L., & Cabral, L.L. (2020). Etiology and treatment of dentin hyperesensitivity today: integrative review. Research, Society and Development, 9(8), e661986192.

Peitl, O., LaTorre, G. P., & Hench. L.L. (1996). Effect of crystallization on apatite-layer formation of bioactive glass 45S5. Journal of Biomedical Material Research, 30(4), 509-14.

Peitl, O., Zanotto, E. D., Serbena, F. C., & Hench, L. L. (2012). Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Acta Biomaterialia, 8, 321-332.

Seong, J., Newcombe, R. G., Matheson, J. R., Weddell, L., Edwards, M., & West, N. X. (2020). A randomised controlled trial investigating efficacy of a novel toothpaste containing calcium silicate and sodium phosphate in dentine hypersensitivity pain reduction compared to a fluoride control toothpaste. Journal of Dentistry, 98, 103320.

Shiau, H. J. (2012). Dentin Hypersensitivity. Journal of Evid-Based Dental Practice, 12(3), 220-28.

Song, J., Wang, H., Yang, Y., Xiao, Z., Lin, H., Jin, L., Lin, M., Chen, F., Zhu, M., Zhao, Y., Qiu, Z., Li, Y., & Zhang, X. (2018). Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules. Journal of Materials Science: Materials in Medicine, 29, 84-95.

Suge, T., Kawasaki, A., Ishikawa, K., Matsuo, T., & Ebisu, S. (2008). Ammonium hexafluorosilicate elicits calcium phosphate precipitation and shows continuous dentin tubule occlusion. Dental Material, 24(2), 192-198.

Tartari, T., Bachmann, L., Zancan, R. F., Vivian, R. R., Duarte, M. A. H., & Bramante, C. M. (2018). Analysis of the effects of several decalcifying agents alone and in combination with sodium hypochlorite on the chemical composition of dentine. International Endodhotic Journal, 51(1), e42-e54.

Thanatvarakorn, O., Nakashima, S., Sadr, A., Ikeda, M., & Tagami, J. (2013). In vitro evaluation of dentinal hydraulic conductance and tubule sealing by a novel calcium–phosphate desensitizer Journal of Biomedical Material Research Part B. 101, 303-309.

Tirapelli, C., Panzeri, H., Lara, E. H., Soares, R. G., Peitl, O., & Zanotto, E. D. (2011). The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study. Journal of Oral Rehabilitation, 38(4), 253-62.

Tirapelli, C., Panzeri, H., Soares, R. G., Peitl, O., & Zannoto, E. D. (2010). A novel bioactive glass-ceramic for treating dentin hypersensitivity. Brazilian Oral Research, 24, 381-387.

Tunar, O. L., Gursoy, H., Çakar, G., Kuru, B., Ipci, S. D., & Yilmaz, S. (2014). Evaluation of the Effects of Er:YAG Laser and Desensitizing Paste Containing 8% Arginine and Calcium Carbonate, and Their Combinations on Human Dentine Tubules: A Scanning Electron Microscopic Analysis. Photomedicine and Laser Surgery, 32(10), 540-545.

Wang, S., Gao, X., Gong, W., Zhang, Z., Chen, X., & Dong, Y. (2014). Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomaterialia., 10, 2792-2803.

Zhong, Y., Liu, J., Li, X., Yin, W., He, T., Hu, D., Liao, Y., Yao, X., & Wang, Y. (2015). Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study. Australian Dental Journal, 60, 96–103.

Downloads

Publicado

12/03/2021

Como Citar

JURASKI, A. de C.; FIGUEREDO, D. C.; DAGHASTANLI, N. A. .; SANTOS, C. dos .; FERNANDES, M. H. V. .; ANA, P. A. da .; DAGUANO, J. K. M. B. Efeito de um vitrocerâmico de whitlockite na oclusão dos túbulos dentinários para tratamento da hipersensibilidade dentinária . Research, Society and Development, [S. l.], v. 10, n. 3, p. e19610313161, 2021. DOI: 10.33448/rsd-v10i3.13161. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13161. Acesso em: 3 jul. 2024.

Edição

Seção

Engenharias