Estudo e influência dos óleos essenciais de cravo, canela e laranja na preparação de filmes de poli (ácido lático): desenvolvimento de embalagens ativas
DOI:
https://doi.org/10.33448/rsd-v10i4.14340Palavras-chave:
PLA; Óleos essenciais; Filmes; Atividade antimicrobiana.Resumo
O poli (ácido lático) – PLA é um polímero biocompatível e biodegradável com algumas propriedades semelhantes aos polímeros convencionais, destacando-se em diversas aplicações, dentre elas, a indústria de embalagens. A substituição dos aditivos convencionais por componentes naturais como os óleos essenciais, vem tornando-se uma alternativa promissora para a produção das chamadas embalagens ativas, que promovem a segurança alimentar a partir da ação antimicrobiana. Sendo assim, o objetivo deste trabalho foi produzir filmes de PLA por casting aditivados com óleos essenciais (OE) de cravo, laranja e canela, para sua possível aplicação como embalagem ativa. Os óleos foram caracterizados por Cromatografia Gasosa acoplada com Espectrômetro de Massa (GC-MS), Espectroscopia no infravermelho com transformada de Fourier (FTIR) e por disco-difusão em ágar. Os filmes foram caracterizados por Microscopia óptica (MO), Calorimetria Exploratória Diferencial (DSC), FTIR, Análise Termogravimétrica (TG) e Análise antimicrobiana do filme. Com os resultados obtidos foi possível observar que o filme de PLA com os óleos essenciais apresentaram melhora no desempenho quanto a sua propriedade térmica e atividade antimicrobiana. Dentre os três filmes aditivados, o filme PLA/OE Cravo destacou-se por haver uma intensa ação bactericida sem degradação do filme, o que o torna um promissor aditivo adicionado ao PLA para aplicações em indústrias de embalagens.
Referências
Andrade, M. F., et al. (2018). Active Packaging Using Orange Oil Incorporated into PBAT Biodegradable Films. Materials Science Forum, Vol. 930, p 283-289.
Aquino, L. C. L., et al. (2010). Atividade antimicrobiana dos óleos essenciais de erva-cidreira e manjericão frente a bactérias de carnes bovinas. Revista Alimentação e Nutrição, 21(4), 529-535.
Arrieta, M. P., et al. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760–768.
Arrieta, M. P., et al. (2014). Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50(1), 255–270.
Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Review. Trends in Food Science & Technology, 48, 51-62.
Auras, R. A., et al. (2010) Poly (lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons, ISBN 978-0-470-29366-9.
Bier, O. (1994). Microbiologia e imunologia. (30a ed.) Melhoramentos. p. 12341.
Celikel, N., & Kavas, G. (2008). Antimicrobial Properties of Some Essential Oils against Some Pathogenic Microorganisms. Czech J. Food Sci., 26(3), 174–181.
Chen, Y., & Wu, T. (2014). Crystallization Kinetics of Poly (1,4-butylene adipate) with Stereocomplexed Poly (lactic acid) Serving as a Nucleation Agent. Industrial & Engineering Chemistry Research. 53, 16689-16695.
Chen, H., et al. (2016). Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids, 61, 662–671.
Devi, K. P., et al. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130. 107-115.
Dil, E. J., Carreau, P. J., & Favis, B. D. (2015). Morphology, miscibility and continuity development in poly (lactic acid)/ poly (butylene adipate-co-terephthalate) blends. Polymer, 68, 202–212.
Djellali, S., et al. (2013). Structural, morphological and mechanical characteristics of polyethylene, poly (lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iranian Polymer Journal, 22(4), 245-257.
Ferreira, S. B., Dantas, I. C., & Catão, R. M. R. (2014). Evaluation of the antimicrobial activity of the essential oil of sucupira (Pterodon emarginatus). Rev. bras. plantas med, 16(2), 225-230.
Fu, Y., et al. (2007). Antimicrobial Activity of Clove and RosemaryEssential Oils Alone and in Combination. Phytotherapy Research, 21, 989–994.
Hilbig, J., et al. (2016). Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80. International Journal of Food Microbiology. 233, 52 – 59.
Janorkar, A. V., Metters, A. T., & Hirt, D. E. (2004). Modification of poly (lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules, 37(24), 9151-9159.
Japanese Industrial Standard. JIS Z 2801: 2000 (2000). Antimicrobial products-Test for antimicrobial activity and efficacy. https://microchemlab.com/test/jis-z-2801-test-antimicrobial-activity-plastics
Jiang, J., Zhang, K., & Wu, G. (2012). Rubber-toughened PLA blends with low thermal expansion. Journal of Applied Polymer Science, 128(6), 3993–4000.
Lima, J. C. C., et al. (2019) PLA/SEBS Bioblends: Influence of SEBS Content and of Thermal Treatment on the Impact Strength and Morphology. Macromolecular Symposia, 383, 1-6.
Liu, D., et al. (2016). Characterization of Active Packaging Films Made from Poly (Lactic Acid)/ Poly (Trimethylene Carbonate). Molecules, 21(695), 1-14.
Llana-Ruiz-Cabello, M., et al. (2015). Characterization and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT - Food Science and Technology, 64(2), 1354–1361.
Mau, J., Chen, C., & Hsieh, P. (2001). Antimicrobial effects of extracts from Chinese chive, cinnamon and corn fructus. Journal of Agricultural and Food Chemistry, 49, 183-188.
Narayanan, A., et al. (2013). Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Applied Biochemistry and Biotechnology, 170(6), 1379–1388.
National Committee for Clinical Laboratory Standards (CLSI). (2015). M02-A12 Performance Standards for Antimicrobial Disk Susceptibility Tests.” Clinical and Laboratory Standards Institute.
Pereira, R. B., & Morales, A. R. (2014). Estudo do Comportamento Térmico e Mecânico do PLA Modificado com Aditivo Nucleante e Modificador de Impacto. Polímeros, 24, 198–202.
Petersson, L., I., Kvien, K., & Oksman. (2007). Structure and Thermal Properties of Poly(lactic Acid)/cellulose Whiskers Nanocomposite Materials. Composites Science and Technology, 67, 2535–44.
Piorkowska, E., & Rutledge, G. C. (2013). Handbook of Polymer Crystallization.
Pires, T. C., & Piccoli, R.H. (2012). Inhibitory effect of essential oils from the genus Citrus on the microorganism’s growth. Rev. Inst. Adolfo Lutz, 71(2), 378-385.
Prabuseenivasan, et al. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 6(39), 1-8.
Qin, Y., Yang, J., & Xue, J. (2015). Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde. Journal of Materials Science, 50(3), 1150–1158.
Rasal, R. M., & Hirt, D. E. (2009). Micropatterning of covalently attached biotin on poly (lactic acid) film surfaces. Macromolecular bioscience, 9(10), 989-996.
Sebaaly, C., et al. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52–62.
Shanshan, L., et al. (2015). Effect of annealing on the thermal properties of poly (lactic acid)/ starch blends. International Journal of Biological Macromolecules, 74, 297–303.
Silvestri, J. D. F., et al. (2010). Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (Eugenia caryophyllata Thunb.). Revista Ceres, 57(5), 589-594.
Wang, L-F., Rhim, J-W., & Hong, S-I. (2016). Preparation of poly (lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. Food Science and Technology, 68, 454-461.
Wannes, W. A., et al. (2010). Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf stem and flower. Food and Chemical Toxicology, 48, 1362-1370.
Wen, P., et al. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/b-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996-1004.
Yahyaoui, M., et al.(2016). Development of novel antimicrobial films based on poly (lactic acid) and essential oils. Reactive and Functional Polymers, 109, 1–8.
Yokomizo, N. K. S., & Nakaoka-Sakita, M. (2014). Antimicrobial activity and essential oils yield of Pimenta pseudocaryophyllus var. pseudocaryophyllus (Gomes) Landrum, Myrtaceae. Rev. bras. plantas med, 16(3), 513-520.
Zhao, Y. Q., et al. (2014). Morphology, mechanical, and rheological properties of poly (lactic acid)/ethylene acrylic acid copolymer blends processing via vane extruder. Journal of Applied Polymer Science, 131(8), 1-8.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Jéssica Camilla da Costa Lima; Juliana de Castro Nunes Pereira; Michelle Félix de Andrade ; Gelsoneide da Silva Góis ; Ivana Taciana de Almeida Simões; Maria Alcilene Alexandre Dantas da Silva ; Yêda Medeiros Bastos de Almeida ; Glória Maria Vinhas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.