Classificação de cafés especiais usando técnicas de aprendizado de máquina
DOI:
https://doi.org/10.33448/rsd-v10i5.14732Palavras-chave:
Classificação supervisionada; Modelos de classificação; Análise sensorial.Resumo
Os cafés especiais têm grande importância no cenário econômico, e sua qualidade sensorial é apreciada pelo setor produtivo e pelo mercado. Pesquisas têm sido constantemente realizadas na busca por melhores misturas a fim de agregar valor e diferenciar preços de acordo com a qualidade do produto. Para isso, novas metodologias devem ser exploradas, levando em consideração fatores que possam diferenciar as particularidades de cada consumidor e/ou produto. Assim, este artigo sugere o uso da técnica de machine learning na construção de modelos de classificação e identificação supervisionados. Em um teste de avaliação sensorial para aceitação do consumidor utilizando quatro classes de cafés especiais, aplicados a quatro grupos de consumidores treinados e não treinados, foram avaliadas características como sabor, corpo, doçura e grau geral. O uso de machine learning é viável porque permite a classificação e identificação de cafés especiais produzidos em diferentes altitudes e diferentes métodos de processamento.
Referências
Alpaydin, E. (2010). Introduction to machine learning. Adaptive Computation and machine learning Series. MIT Press.
Amaral, F. (2016). Introdução a ciência de dados: mineração de dados e Big Data. Rio de Janeiro: Alta Books. 320 p.
Benedito, L. Z., Lima, C. M. G., Silva, J. F. da, Cardoso, D. C., Verruck, S., & Pereira, R. G. F. A. (2020). Acceptance of coffee by different consumer profiles using multivariate statistics. Research, Society and Development, 9(6), e102963592. 10.33448/rsd-v9i6.3592.
Borém, F. M., Cirillo, M. A., Alves, A. P. C., Santos, C. M., Liska, G. R., Ramos, M. F., & Lima, R. R. (2019). Coffee sensory quality study based on spatial distribution in the Mantiqueira mountain region of Brazil, Journal of Sensory Studies. e12552. 10.1111/joss.12552
Breiman, L. (1996). Bagging predictors. Machine learning. 24(2):123-140, 10.1023/A:1018054314350
Breiman, L. (2001). Random Forests. Machine learning. 45(1):5-32.
Cleary, J. G., &Trigg L. E. (1995) K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, 108-114.
Cohen, W. W. (1995). Fast Effective Rule Induction. In: Twelfth International Conference on machine learning, 115-123.
Espezua, S., Villanueva, E., Maciel, C. D., & Carvalho, A. (2015). A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing 149, 767–776, 10.1016/j.neucom.2014.07.057
Fehr, L. C. F., Duarte, A. S. L., Tavares, M., & Reis, E. A. (2012). Análise temporal das variáveis de custos da cultura do café arábica nas principais regiões produtoras do Brasil Custos e Agronegócio Online, v. 8, n. 1 – Jan/Mar.
Figueiredo, L. P., Borém, F. M.; Ribeiro, F. C., Giomo, G. S., Malta, M. R., & Taveira, J. H. S. (2018). Sensory analysis and chemical composition of `bourbon’ coffees cultivated in different environments. COFFEE SCIENCE, 13, 122.
Frank, E., Hall, M., & Pfahringer, B. (2003). Locally Weighted Naive Bayes. In: 19th Conference in Uncertainty in Artificial Intelligence, 249-256.
Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine learning. 32(1):63-76, 10.1023/A:1007421302149
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In: Thirteenth International Conference on machine learning, San Francisco, 148-156.
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: a Statistical View of Boosting. Stanford University. The Annals of Statistics 2000, 28(2), 337-407.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.
Ho, T. K. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20(8):832-844, 10.1109/34.709601
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine learning. 11:63-91, 10.1023/A:1022631118932
Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In: ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 97-106, 10.1145/502512.502529
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation. 13(3):637-649, 10.1162/089976601300014493
Kira, K., & Rendell, L. A. (1992). A Practical Approach to Feature Selection. In: Ninth International Workshop on Machine Learning, 249-256, 10.1016/B978-1-55860-247-2.50037-1
Kohavi, R. (1995). The Power of Decision Tables. In: 8th European Conference on machine learning, 174-189, 10.1007/3-540-59286-5_57
Kohavi, R. (1995). Wrappers for Performance Enhancement and Oblivious Decision Graphs. Department of Computer Science, Stanford University.
Lakshmi, D., C. (2015). Comparative Analysis of Random Forest, REP Tree and J48 Classifiers for Credit Risk Prediction. IJCA Proceedings on International Conference on Communication, Computing and Information Technology. ICCCMIT 2014(3):30-36.
Landwehr, N., Hall, M., & Frank, E. (2006). Logistic Model Trees. Kluwer Academic Publishers. Printed in the Netherlands.
Liska, G. R., Menezes, F. S., Cirillo, M. A., Borem, F. M., Cortez, R. M., & Ribeiro, D. E. (2015). Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis. Semina. Ciências Agrárias (Online), 36, 3671-3679, 10.5433/1679-0359.2015v36n6p3671
Martinez, W. L., & Martinez, A. R. (2007). Computational Statistics Handbook with MATLAB, (2th. ed.), Chapman & Hall/CRC, 794 p.
Mitchell, T. M. (1997). Machine learning, Mc-Graw Hill, 421p.
Neves, A. das, Okada, H., & Shitsuka, R. (2019). Recognition in Images Using Neural Networks. Research, Society and Development, 8(11), e278111470. 10.33448/rsd-v8i11.1470.
Nicoleli, M., & Moller, H. D. (2006). Análise da competitividade dos custos do café orgânico sombreado irrigado. Custos e Agronegócio Online, 2(1).
Nicoletti, M. C. (2005). O modelo de aprendizado de máquina baseado em exemplares: principais características e algoritmos. EdUFSCar, 61 p.
Oliver, J. J., & Hand, D. (1994). Averaging over decision stumps. Lecture Notes in Computer Science, 231–241, 10.1007/3-540-57868-4_61
Ossani, P. C., & Cirillo, M. A. (2020). MVar: Multivariate Analysis. URL <https://cran.r-project.org/web/packages/MVar/index.html>. R package version 2.1.4.
Ossani, P. C., de Souza, D. C., Rossoni, D. F., & Resende, L. V. (2020). Machine learning in classification and identification of nonconventional vegetables. Journal of Food Science, 85: 4194-4200. 10.1111/1750-3841.15514
Ossani, P. C., Rossoni, D. F., Cirillo, M. Â., & Borém, F. M. (2020). Unsupervised classification of specialty coffees in Homogeneous sensory attributes through machine learning. Coffee Science, 15, e151780. 10.25186/cs.v15i.1780
Ossani, P. C., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., & Cortez, R. M. (2017). Qualidade de cafés especiais: uma avaliação sensorial feita com consumidores utilizando a técnica MFACT. Revista Ciência Agronômica, 48(1), 92-100. 10.5935/1806-6690.20170010
Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: Vienna University of Economics and Business, 2020. .
Silveira, A. S., Pinheiro, A. C. T., Ferreira, W. P. M., Silva, L. J., Rufino, J. L. S., & Sakiyama, N. S. (2016). Sensory analysis of specialty coffee from different environmental conditions in the region of Matas de Minas, Minas Gerais, Brazil. Revista Ceres, 63(4), 436-443, 10.1590/0034-737X201663040002
Spers, E. E., Saes, M. S. M., & Souza, M. C. M. (2004). Análise das preferências do consumidor brasileiro de café: um estudo exploratório dos mercados de São Paulo e Belo Horizonte. RAUSP - Revista de Administração da Universidade de São Paulo, 39(1), 53-61.
Taveira, J. H., Borém, F. M., Rosa, S. D. V. F., Ribeiro, D. E., Chaves, A. R. C. S., Ferreira, D. A., Ferreira, I. T., & Ribeiro, R. C. (2011). Aspectos fisiológicos de grãos de café produzidos em ambientes variados da micro região da Serra da Mantiqueira. In: 7º Simpósio de Pesquisa dos Cafés do Brasil, Araxá. Anais, Epamig.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks. 5:241-259, 10.1016/S0893-6080(05)80023-1
Zamora, V. R. O., Cruz, A. F. da S., Andrade, A. R. S. de, Silva, E. G. da, Andrade, E. K. P. de, Silva, J. D. De S., & Silva, E. T. da. (2020). Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring. Research, Society and Development, 9(11), e4829119947. 10.33448/rsd-v9i11.9947.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Paulo César Ossani; Diogo Francisco Rossoni; Marcelo Ângelo Cirillo; Flávio Meira Borém
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.