Filmes à base de amido de tubérculo da Amazônia incorporados com nanopartículas de prata para preservação de frutas

Autores

DOI:

https://doi.org/10.33448/rsd-v10i6.15304

Palavras-chave:

Atividade antimicrobiana; Dioscorea altissima; Nanopartículas; Filmes de amido.

Resumo

Filmes e revestimentos à base de polímeros naturais são usados para conservar a qualidade nutricional de frutas, vegetais e também retardar seu amadurecimento. O objetivo deste trabalho foi desenvolver filmes com amido extraído de Dioscorea altissima Lam. (cará-de-espinho) incorporado com nanopartículas de prata para revestimento e preservação de frutas. Os filmes obtidos por casting foram caracterizados visualmente, por Microscópio Eletrônico de Varredura, Microscopia de Força Atômica, Difração de Raios-X e Espectroscopia de Infravermelho com Transformada de Fourier. A atividade antimicrobiana e as propriedades tecnológicas também foram avaliadas. O revestimento dos frutos de camu-camu [Myrciaria dubia (Kunth) McVaugh] foi realizado por imersão em solução filmogênica, seguida de suas análises físico-químicas e microbiológicas. Os filmes com nanopartículas de prata apresentaram transparência, flexibilidade, aglomerados esféricos e maior rugosidade média. Uma redução na espessura, solubilidade e permeabilidade ao vapor de água também foi observada. A ação antimicrobiana contra Staphylococcus aureus e Escherichia coli também foi comprovada. Os frutos revestidos com filmes exibiram atraso no amadurecimento, com manutenção da qualidade e longevidade. Frutos não revestidos apresentaram maior murchamento e enrugamento. O filme de amido incorporado com nanopartículas de prata foi eficaz na preservação do fruto do camu-camu.

Referências

Association of Official Analytical Chemists. (2006). Official methods of analysis of the Association of Official Analytical Chemists. Arlington, USA.

Arellano-Acuña, E.; Rojas-Zavaleta, I. & Paucar-Menacho, L. M. (2016). Camu-camu (Myrciaria dubia): Tropical fruit of excellent functional properties that help to improve the quality of life. Scientia Agropecuaria, 7 (4), 433-443.

Assis, O. B. G. & Britto, D. (2014). Review: edible protective coatings for fruits: fundamentals and applications. Brazilian Journal of Food Technology, 17 (2), 87-97.

American Society for Testing and Materials. (2010). Standard Test Methods for Water Vapor Transmission of Materials – ASTM E96/E96M-10. Philadelphia, USA.

Basiak, E.; Lenart, A. & Debeaulfort, F. (2017). Effect of starch type on the physical-chemical properties of edible films. International Journal of Biological Macromolecules, 98 (1), 348-356.

Beber, P. M.; Álvares, V. S. & Kusdra, J. F. (2018). Industrial quality and maturation of sweet orange fruits in Rio Branco, Acre. Citrus Research & Technology, 39 (1), 1-9.

Berté, R. (2013). Synthesis and chacacterization of silver nanoparticles functionalized with antimicrobial peptides. Dissertação (Mestrado em Física Aplicada) – Universidade de São Paulo, São Carlos.

Bergo, P.; Sobral, P. J. A. & Prison, J. M. (2010). Effect of glycerol on physical properties of cassava starch films. Journal of Food Processing and Preservation, 34 (1), 401–410.

Carvalho, D. U. C.; Cruz, R. C.; Colombo, R. C.; Watanabe, L. S.; Tazima, Z. H. & Neves, C. S. V. J. (2020). Determination of organic acids and carbohydrates in ‘Salustiana’ orange fruit from different rootstocks. Brazilian Journal of Food Technology, 23 (1), 1-11.

Chevirón, P.; Gouanvé, F. & Espuche, E. (2016). Preparation, characterization and barrier properties of silver/montmorillonite/starch nanocomposite films. Journal of Membrane Science, 497 (1), 162-171.

Dantas, E. A.; Costa, S. S.; Cruz, L. S.; Bramont, W. B.; Costa, A. S.; Padilha, F. F.; Druzian, J. I. & Machado, B. A. S. (2015). Characterization and evaluation of the antioxidant properties of biodegradable films incorporated with tropical fruit pulps. Ciência Rural, 45 (1), 142-148.

Fakhouri, F. M.; Fontes, L. C. B.; Gonçalves, P. V. M.; Milanez, C. R.; Steel, C. J. & Collares-Queiroz, F. P. (2007). Films and edible coatings based on native starches and gelatin in the conservation and sensory acceptance of Crimson grapes. Food Science and Technology, 27 (2), 369-375.

Farias, M. G.; Carvalho, C. W. P.; Takeiti, C. Y. & Ascheri, J. L. R. (2012). The effect of water vapor permeability, activity, wettability and solubility on starch and acerola pulp films. Embrapa Agroindústria Tropical, 135-137.

Fayaz, A. M.; Balaji, K.; Girilal, M.; Kalaichelvan, P. T. & Venkatesan, R. (2009). Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry, 57 (14), 6246–6252.

Fernández, A.; Picouet, P. & Lloret, E. (2010). Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbiology, 142 (1-2), 222–228.

Ferreira, C. H.; Passos, E. F. & Marques, P. T. (2015). Spectroscopic and physicochemical characterization of starch blends and carboxymethyl cellulose films. Congress of Chemical Engineering in Scientific Initiation, 1 (3), 1-6.

Gontard, N.; Duches, C.; Cuq, J. L. & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids water vapor permeability and other physical properties. International Journal of Food Science Technology, 29 (1), 39-50.

Gwyddion. (2019). Gwyddion Software. Free Software Foundation. http://gwyddion.net

Horcas, I. & Fernández, R. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review Scientific Instruments, 78 (1), 1-8.

Kanmani, P. & Rhim, J. W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35 (1), 644–652.

Li, W.; Li, L.; Zhang, H.; Yuan, M. & Qin, Y. (2018). Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. Journal of Food Processing and Preservation, 42 (1), 1-9.

Loy-Hendrickx, A.; Uyttendaele, M.; Vermeulen, A.; Jacxsens, L.; Debevere, J. & Devlieghere, F. (2018). Microbiological Guidelines: Support for Interpretation of Microbiological Test Results of Foods. Die Keure.

Campos, A.; Sena Neto, A. R.; Rodrigues, V. B.; Luchesi, B. R.; Moreira, F. K. V.; Correa, A. C.; Mattoso, L. H. C.; Marconcini, J. M. (2017). Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydrate Polymers, 175 (2017), 330–336.

Mateescu, A. L.; Dimov, T. V.; Grumezescu, A. M.; Gestal, M. C. & Chifiriuc, M. C. (2015). Nanostructured bioactive polymers used in food-packaging. Current Pharmaceutical Biotechnology, 16 (2), 121-127.

Minitab. (2017). Minitab Statistical Software. https://www.minitab.com

Nascimento, W. M. O. & Carvalho, J. E. U. (2012). The culture of camu-camu. Embrapa.

Oliani, W. L.; Parra, D. F.; Komatsu, L. G. H.; Lincopan, N.; Rangari, V. K. & Lugao, A. B. (2016, november). Nanocomposites based on polypropylene with nanosilver particles and antibacterial behavior – a review. In Proceedings of CBECiMat - Brazilian Materials Science and Engineering Congress, Rio Grande do Norte, Brasil, 22.

Oliveira, J.; Silva, I. G.; Silva, P. P. M. & Spoto, M. H. F. (2014). Modified atmosphere and refrigeration for postharvest camu-camu. Ciência Rural, 44 (6), 1126-1133.

Ortega, F.; Gianuzzi, L.; Arce, V. B. & Garcia, M. A. (2017). Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 70 (1), 152-162.

Pagno, C. H.; Costa, T. M. H.; Menezes, E. W.; Benvenutti, E. V.; Hertz, P. F.; Matte, C. R.; Tosati, J. V.; Monteiro, A. R.; Rios, A.O. & Flores, S. H. (2015). Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 173 (15), 755-762.

Pandey, S.; Klerk, C.; Kim, J.; Kang, M. & Fosso-Kankeu, E. (2020). Eco friendly approach for synthesis, characterization and biological activities of milk protein stabilized silver nanoparticles. Polymers, 12, 1418.

Pilon, L.; Spricigo, P. C.; Miranda, M.; Moura, M. R.; Assis, O. B. G.; Mattoso, L. H. C. & Ferreira, M. D. (2015). Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality atributes. International Journal of Food Science and Technology, 50 (2), 440-448.

Rolim, W. R.; Pelegrino, M. T.; Lima, B. A.; Ferraza, L. S.; Costa, F. N.; Bernardes, J. S; Rodrigues, T.; Brocch, M. & Seabra, A. B. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463 (1), 66-74.

Sanches, A. G.; Silva, M. B.; Moreira, E. G. S.; Costa, J. M. & Cordeiro, C.A. M. (2017). Effects of radiation sources in physiology and life camu-camu post-harvest. Revista de Agricultura Neotropical, 4 (3), 1-8.

Sánchez-González, L.; Arab-Tehrany, E.; Cháfer, M.; González-Martínez, C. & Chiralt, A. (2014). Active edible and biodegradable starch films. Polysaccharides, 1-15.

Santos, R. M. B.; Chagas, P. C.; Rocha, J. H. M. V.; Chagas, E. A.; Panduro, M. H. P.; Lozano, R. M. B. & Rodriguez, C. A. (2018). Camu-camu production chain (Myrciaria dubia (Kunth) Mc Vaugh): the case of the producing regions of Loreto and Ucayali, Peruvian Amazon. Interciencia, 43 (4), 261-268.

Siddiq, M.; Ahmed, J.; Lobo, M. G. & Ozadali, F. (2012). Tropical and Subtropical Fruits: Postharvest Physiology, Processing and Packaging. Wiley-Blackwell.

Silva, L. S. C.; Martim, S. R.; Souza, R. A. T.; Machado, A. R. G.; Teixeira, L. S.; Sousa, L. B.; Vasconcellos, M. C. & Teixeira, M. F. S. (2019). Extraction and characterization of starch from Dioscorea species cultivated in the Amazon. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, 14 (3), 439-452.

Silva, T. A.; Andrade, P. F.; Segala, K.; Silva, L. S. C.; Silva, L. P.; Nista, S. V. G.; Mei, L. H. I.; Durán, N. & Teixeira, M. F. S. (2017). Silver nanoparticles biosynthesis and impregnation in cellulose acetate membrane for anti-yeast therapy. African Journal of Biotechnology, 16 (27), 1490-1500.

Silva-Vinhote, N. M.; Durán, N.; Silva, T. A.; Quelemes, P. V.; Araújo, A. R.; Moraes, A. C. M.; Câmara, A. L. S.; Longo, J. P. F.; Azevedo, R. B.; Silva, D. A.; Leite, J. R. S. A & Teixeira, M. F. S. (2017). Extracellular biogenic synthesis of silver nanoparticles by Actinomycetes from Amazonic Biome and its antimicrobial efficiency. African Journal of Biotechnology, 16 (43), 2072-2082.

Simbine, E. O.; Rodrigues, L. C.; Lapa-Guimarães, J.; Kamimura, E. S.; Corassin, C. H. & Oliveira, C. A. F. (2019). Application of silver nanoparticles in food packages: a review. Food Science and Technology, 39 (4), 793-802.

Sueiro, A. C.; Faria-Tischer, P. C. S.; Lonni, A. A. S. G. & Mali, S. (2016). Biodegradable films of cassava starch, pullulan and bacterial cellulose. Química Nova, 39 (9), 1059-1064.

Sun, H.; Zhang, S.; Chen, C.; Li, C.; Xing, S.; Liu, J.; Xing, S.; Liu, J. & Xue, J. (2019). Detection of the soluble solid contents from fresh jujubes during different maturation periods using NIR Hyperspectral imaging and an artificial bee colony. Journal of Analytical Methods in Chemistry, 2019 (1), 1-8.

Teixeira, L. S.; Martim, S. R.; Silva, L. S. C.; Kinupp, V. F.; Teixeira, M. F. S. & Porto, A. L. F. (2016). Efficiency of Amazonian tubers flours in modulating gut microbiota of male rats. Innovative Food Science & Emerging Technologies, 38 (A), 1-6.

Tyagi, S.; Tyagi, P. K.; Gola, D.; Chauhan, N. & Bharti, R. K. (2019). Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Applied Science, 1, 1545.

Versino, F.; Lopez, O. V.; Garcia, M. A. & Zaritzky, N. E. (2016). Starch-based films and food coatings: An overview. Starch/Starke, 68 (11), 1-12.

Yoksan, R. & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Material Science and Enginnering: C, 30 (6), 891-897.

Downloads

Publicado

19/05/2021

Como Citar

SILVA , L. S. C. .; MARTIM, S. R. .; GOMES, D. M. D. .; PRADO, F. B. .; MARINHO, N. M. V. .; SILVA, T. de A. .; CASTILLO, T. A. .; REGO, J. de A. R. do .; SEABRA , A. B. .; DURÁN, N. .; TEIXEIRA, M. F. S. . Filmes à base de amido de tubérculo da Amazônia incorporados com nanopartículas de prata para preservação de frutas. Research, Society and Development, [S. l.], v. 10, n. 6, p. e23510615304, 2021. DOI: 10.33448/rsd-v10i6.15304. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15304. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas