Avaliação da suplementação com caseína sobre o periodonto e osso mandibular de ratos alimentados com dieta padrão e dieta de cafeteria

Autores

DOI:

https://doi.org/10.33448/rsd-v10i7.16169

Palavras-chave:

Dieta de cafeteria; Proteína láctea; Caseína; Reabsorção óssea alveolar; Periodonto.

Resumo

Objetivo: Avaliar o efeito da suplementação com caseína sobre o periodonto e osso mandibular de ratos alimentados com dieta padrão e dieta de cafeteria. Metodologia: 24 ratos Wistar foram divididos em quatro grupos experimentais: dieta normal (DN), dieta normal com caseína (DNC), dieta de cafeteria (DC) e dieta de cafeteria com caseína (DCC). Os grupos DNC e DCC receberam 2 mL de caseína micelar do 60º ao 90º dia. Aos 90 dias, os animais foram ortoeutanasiados e os materiais foram coletados para análise. Resultados: Os animais dos grupos DC e DCC apresentaram maior índice de adiposidade comparados a DN e DNC (p<0001). O grupo DCC teve dosagem de colesterol HDL significativamente menor que DN (p<0,0092). Na análise radiográfica da hemimandíbula dos animais, não foi observada diferença em relação à densidade de pixels, entretanto, houve diferença no tamanho da porção anterior mandibular entre DCC e DNC (p<0,0196) e DCC e DN (p<0,0039). Histologicamente, observou-se redução de vasos sanguíneos, tanto em osso alveolar (p=0,0033), osso da furca (p<0,0001) e ligamento periodontal (p=0,0001) em DCC. Além disso, no osso alveolar houve diminuição de osteócitos no grupo DCC em relação à DNC (p=0,0198).  Conclusões: O aumento da adiposidade contribuiu para diminuição de vasos sanguíneos e osteócitos no tecido ósseo de ratos, apesar de não influenciar na inflamação. Esse efeito foi independente de caseína. Portanto, a suplementação com caseína em ratos submetidos a dieta de cafeteria não foi efetiva para diminuir o acúmulo de tecido adiposo, bem como não interferiu positivamente no metabolismo ósseo da hemimandíbula.

Referências

Afolabi, H. A., bin Zakariya, Z., Shokri, A. B. A., Hasim, M. N. B. M., Vinayak, R., Afolabi-Owolabi, O. T., Elesho, R. F. (2020). The relationship between obesity and other medical comorbidities. Obes Med, (17), 100164.

Barrett, P., Mercer, J. G., & Morgan, P. J. (2016). Preclinical models for obesity research. Dis Model Mech, 9 (11), 1245-1255.

Benayahu, D., Wiesenfeld, Y., Sapir‐Koren, R. (2019). How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol, 234 (8), 12133-12141.

Bernardis, L. L. & Patterson, B. D. (1968). Correlation between 'Lee index' and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol, (40), 527–528.

Brin, I., Michaeli, Y., & Steigman, S. (1990). Long-term Effects of Orthodontic Forces on the Morphology of the Rat-incisor Socket and its Location in the Mandible. J Dent Res, 69 (12), 1834-1838.

Cao, J.J. (2011). Effects of obesity on bone metabolism. J Orthop Surg Res, (6), 30-36.

Chia, J. S. J., McRae, J. L., Enjapoori, A. K., Lefèvre, C. M., Kukuljan, S., & Dwyer, K. M. (2018). Dietary Cows' Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients, 10 (9), 1291.

Coltri, B. M., Costa, K. F. D., Pontillo, V., Bonfleur, M. L., Brancalhão, R. M. C., Beu, C. C. L. et al. (2017). Avaliação morfométrica da influência da obesidade sobre o tecido gengival de ratos com periodontite experimental. Rev Bras Ciênc Saúde, 21 (2), 127-132.

Compston, J. E., Flahive, J., Hosmer, D. W., Watts, N. B., Siris, E. S., & Silverman, S. (2014). Relationship of Weight, Height, and Body Mass Index With Fracture Risk at Different Sites in Postmenopausal Women: The Global Longitudinal Study of Osteoporosis in Women (GLOW). J Bone Miner Res, 29 (2), 487–93.

Compston, J. E., Watts, N. B., Chapurlat, R., Cooper, C., Boonen, S., Greenspan, S., Pfeilschifter, J., Silverman, S., Díez-Pérez, A., Lindsay, R., & Saag, K. G. (2011). Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med, 124(11), 1043-50.

Dalmolin, A. C., Rosa, A. R., Grassiolli, S., de Miranda Soares, M. A., & Omar, N. F. (2018). Mineral Contents and Somatometric Parameters in the Hemimandible, Tibia and Incisor of Rats Submitted to a Hypothalamic Obesity Condition. J Obes Chronic Dis, 2 (2), 57-61.

Didek, D. Cordeiro, M. M., Xavier, J. L. D. P., Ribeiro, P. R., Rentz, T., Franco, G. C. N., et al. (2019). Association Between Exercise and Treatment with Liraglutide in Obese Rats by Cafeteria Diet. Braz Arch. Biol Technol, (62), e19180563.

Duque, G., Ahmed, A. S., Rivas, D., Miard, S., Ferland, G., Picard, F., & Gaudreau, F. (2020). Differential Effects of Long-Term Caloric Restriction and Dietary Protein Source on Bone and Marrow Fat of the Aging Rat. J Gerontol, 75 (11), 2031–2036.

Eller, L. & Reimer, R. (2018). Dairy Protein Attenuates Weight Gain in Obese Rats Better Than Whey or Casein Alone. Obesity, (18), 704–711.

Felson, D. T., Zhang, Y., Hannan, M. T., & Anderson, J. J. (1993). Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J Bone Miner Res, 8 (5), 567–73.

Fried, A., Manske, S., Eller, L., Lorincz, C., Reimer, R., & Zernicke, R. (2012). Skim milk powder enhances trabecular bone architecture compared with casein or whey in diet-induced obese rats. Nutrition, (28), 31–335.

Gkastaris, K., Goulis, D. G., Potoupnis, M., Anastasilakis, A. D., & Kapetanos, G. (2020). Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact, 20 (3), 372.

Gomez-Ambrosi, J., Rodriguez, A., Catalan, V., & Frühbeck, G. (2008). The bone-adipose axis in obesity and weight loss. Obes Surg, 18 (9), 1134-1143.

Greco, E. A., Fornari, R., Rossi, F., Santiemma, V., Prossomariti, G., Annoscia, C., & Migliaccio, S. (2010). Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clin Pract, 64 (6), 817-820.

Hall, W., Millward, D., Long, S., & Morgan, L. (2003). Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nut, 89 (2), 239–248.

Healy, N. P., Kirwan, A. M., McArdle, M. A, Holohan, K., Nongonierma, A. B., Keane, D., et al. (2016). A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasome-mediated inflammation and improving insulin signaling. Mol Nutr Food Res. 60 (11), 2421-2432.

Jacobsen, B. B., Leopoldo, A. P. L., Cordeiro, J. P., Campos, D. H. S. D., Nascimento, A. F. D., Sugizaki, M. M., et al. (2017). Cardiac, metabolic and molecular profiles of sedentary rats in the initial moment of obesity. Arq Bras Cardiol, 109 (5), 432-439.

Khojastepour, L., Mohammadzadeh, S., Jazayeri, M., & Omidi, M. (2017). In vitro Evaluation of the Relationship between Gray Scales in Digital Intraoral Radiographs and Hounsfield Units in CT Scans. J Biomed Phys Eng, 7 (3), 1-10.

Kim, S. P., Frey, J. L., Li, Z., Kushwaha, P., Zoch, M. L., Tomlinson, R. E., & Riddle, R. C. (2017). Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc. Natl. Acad, 114 (52), E11238-E11247.

Kouw, I. W., Holwerda, A. M., Trommelen, J., Kramer, I. F., Bastiaanse, J., Halson, S. L., & van Loon, L. J. (2017). Protein ingestion before sleep increases overnight muscle protein synthesis rates in healthy older men: a randomized controlled trial. J Nutr, 147 (12), 2252-2261.

Lillefosse, H. H., Tastesen, H. S., Du, Z. Y., Ditlev, D. B., Thorsen, F. A., Madsen, L., & Liaset, B. (2013). Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice. J Nutr, 143 (9), 1367-1375.

Marine-Casado, R., C. Domenech-Coca, C., Del Bas, J. M., Bladé, C., Arola, L., & Caimari, A. (2018). Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol, (9), 1639.

Messer, J. G., Jiron, J. M., Chen, H. Y., Castillo, E. J., Mendieta Calle, J. L., Reinhard, M. K., et al. (2017). Prevalence of food impaction-induced periodontitis in conventionally housed marsh rice rats (Oryzomys palustris). Comparative Med, 67 (1), 43-50.

Messer, J. G., La, S., Kipp, D. E., Castillo, E. J., Yarrow, J. F., Jorgensen, M., et al. (2019). Diet-induced Generalized Periodontitis in Lewis Rats. Comparative Med, 69 (5), 384-400.

Mirzababaei, A., Mirzaei, K., Khorrami-Nezhad, L., Maghbooli, Z., & Keshavarz, S. A. (2017). Metabolically healthy/unhealthy components may modify bone mineral density in obese people. Arch Osteoporos, 12 (1), 1-9.

Mundim, M. B. V., Dias, D. R., Costa, R. M., Leles, C. R., Azevedo-Marques, P. M., & Ribeiro Rotta R. F. (2016). Intraoral radiographs texture analysis for dental implant planning. Comput Methods Programs Biomed, (36), 89-96.

Nahin, R. L., Barnes, P. M., Stussman, B. J., & Bloom, B. (2009). Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: United States, 2007. Natl Health Stat Report, 30 (18), 1-14.

Proietto J. (2020). Obesity and Bone. F1000Res, 9 (1), 1-7.

Ramos-Junior, E. S., Leite, G. A., Carmo-Silva, C. C., Taira, T. M., & Neves, K. B. (2017). Adipokine chemerin bridges metabolic dyslipidemia and alveolar bone loss in mice. J Bone Miner Res, 32 (5), 974-984.

Rauch, A., Haakonsson, A. K., Madsen, J. G. S., & Mandrup, S. (2019). Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet, (51), 716–727.

Rowe, P., Koller, A., & Sharma, S. (2020). Physiology, bone remodeling. Treasure Island (FL): StatPearls Publishing.

Sawin, E., Stroup, B., Murali, S., O'Neill, L., Ntambi, J., & Ney, D. (2016). Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLOS ONE, 32-33.

Schetz, M., De Jong, A., Deane, A. M., Druml, W., Hemelaar, P., Pelosi, P., Pickkers, P., Reintam-Blaser, A., Roberts, J., Sakr, Y., & Jaber, S. (2019). Obesity in the critically ill: a narrative review. Intensive Care Med, 45 (6), 757-769.

Schoemaker, M. H., Kleemann, R., Morrison, M. C., Verheij, J., Salic, K., van Tol, E. A., et al. (2017). A casein hydrolysate based formulation attenuates obesity and associated non-alcoholic fatty liver disease and atherosclerosis in LDLr-/-.Leiden mice. PLoS One, 12 (7), e0180648, 2017.

So, I., & Yadav, H. (2020). Obesity and Its Complications Pathogenesis. In: Pathophysiology of Obesity-Induced Health Complications. Springer, Cham, (19), 43-56.

Tappia, P. S., & Defried, D. (2020). Prevalence, Consequences, Causes and Management of Obesity. In: Pathophysiology of Obesity-Induced Health Complications. Springer, Cham, (19), 3-22.

Walsh, J. S., & Vilaça, T. (2017). Obesity, Type 2 Diabetes and Bone in Adults. Calcif Tissue Int, (100), 528–35.

Wong, S. K., Chin, K. Y., Suhaimi, F. H., Ahmad, F., & Ima-Nirwana, S. (2018). Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One, 13(2), e0192416.

Zhou, M., Li, S., & Pathak, J. L. (2019). Pro-inflammatory Cytokines and Osteocytes. Curr Osteoporos, (17), 97–104.

Downloads

Publicado

11/06/2021

Como Citar

RIZZI, M.; PASQUALOTTO, K. R. .; DELFRATE, G.; MROCZEK, T.; SOISTAK, A. P. .; DAVID, L. P.; CLAUDINO, M.; SCOMPARIN, D. X. Avaliação da suplementação com caseína sobre o periodonto e osso mandibular de ratos alimentados com dieta padrão e dieta de cafeteria. Research, Society and Development, [S. l.], v. 10, n. 7, p. e1410716169, 2021. DOI: 10.33448/rsd-v10i7.16169. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16169. Acesso em: 18 maio. 2024.

Edição

Seção

Ciências da Saúde