Composição química, fitotoxicidade e citogenotoxicidade do óleo essencial de folhas de cultivares de Psidium guajava L.

Autores

DOI:

https://doi.org/10.33448/rsd-v10i9.17710

Palavras-chave:

Atividade biológica; Bioherbicidas; Cromossomos; Bioensaio vegetal; Terpenos; Índice mitótico.

Resumo

Produtos naturais com atividade biológica, como os óleos essenciais, podem ser utilizados na busca e desenvolvimento de herbicidas ecológicos como alternativa para reduzir os danos causados pelos herbicidas sintéticos. Este trabalho teve como objetivo determinar a composição química e propriedades fitotóxicas de óleos essenciais, nas concentrações de 3000, 1500, 750, 375 e 187,5 µg/mL, de quatro cultivares de Psidium guajava (goiaba) avaliadas na germinação e crescimento radicular das plantas modelos Lactuca sativa e Sorghum bicolor, bem como no ciclo celular de L. sativa. A exposição aos óleos essenciais reduziu a germinação e o crescimento radicular nos bioensaios, especialmente na concentração mais elevada (3000 µg/mL). Os óleos essenciais interferiram na dinâmica normal do ciclo celular de L. sativa na maioria das concentrações, causando diminuição do índice mitótico e aumento das alterações cromossômicas, evidenciando ação aneugênica e clastogênica. A atividade biológica dos óleos foi associada à presença de sesquiterpenos e monoterpenos aqui encontrados, como óxido de cariofileno, (E) -cariofileno e limoneno. Assim, os óleos essenciais de cultivares de goiaba demonstraram potencial promissor para uso como herbicidas naturais.

Referências

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Ed. 4). Allured Publishing Corporation.

Almeida, L., Teixeira, M. C., Lemos, J. R., Lacerda, M. N., & Silva, T. C. (2019). Bioatividade de óleos essenciais na germinação e no vigor em sementes de tomate. Biotemas, 32(2), 13–21.

Alves, T. de A., Pinheiro, P. F., Fontes, M. M. P., Andrade-Vieira, L. F., Corrêa, K. B., Alves, T. A., Cruz, F. A., Júnior, V. L., Ferreira, A., & Soares, T. C. B. (2018). Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Industrial Crops and Products, 114, 59–67. https://doi.org/10.1016/j.indcrop.2018.01.071

Amri, I., Hamrouni, L., Hanana, M., Gargouri, S., Fezzani, T., & Jamoussi, B. (2013). Chemical composition, physico-chemical properties, antifungal and herbicidal activities of Pinus halepensis Miller essential oils. Biological Agriculture and Horticulture, 29(2), 91–106. https://doi.org/10.1080/01448765.2013.764486

Andrade-Vieira, L. F., Botelho, C. M., Palmieri, M.J., Laviola, B. G., & Praça-Fontes, M. M. (2014). Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. Anais da Academia Braseleira de Ciências, 86(1), 373-382. http://dx.doi.org/10.1590/0001-3765201420130041

Aragão, F. B., Queiroz, V. T., Ferreira, A., Costa, A. V., Pinheiro, P. F., Carrijo, T. T., & Andrade-Vieira, L. F. (2017). Phytotoxicity and cytotoxicity of Lepidaploa rufogrisea (Asteraceae) extracts in the plant model Lactuca sativa (Asteraceae). Revista de Biologia Tropical, 65(2) 1-10. https://doi.org/10.15517/rbt.v65i2.25696

Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M. J., Abenavoli, M. R., & Sánchez-Moreiras, A. M. (2016). Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PLoS ONE, 11(8), 1–26. https://doi.org/10.1371/journal.pone.0160202

Aslam, F., Khaliq, A., Matloob, A., Tanveer, A., Hussain, S., & Zahir, Z. A. (2017). Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology, 27(1). https://doi.org/10.1007/s00049-016-0225-x

Babich, H. (1997). The “Allium” test: A simple, eukaryote genotoxicity assay. The American Biology Teacher, 59(9), 580–583. https://doi.org/10.2307/4450386

Barbosa, L. C. A., Demuner, A. J., Clemente, A. D., Paula, V. F., & Ismail, F. M. D. (2007). Seasonal variation in the composition of volatile oils from Schinus terebinthifolius Raddi. Quimica Nova, 30(8), 1959–1965. https://doi.org/10.1590/S0100-40422007000800030

Beech, E., Rivers, M., Oldfield, S., & Smith, P. P. (2017). GlobalTreeSearch: the first complete global database of tree species and country distributions. Journal of Sustainable Forestry, 36, 454–489. https://doi.org/10.1080/10549811.2017.1310049

Boaro, C. S. F., Vieira, M. A. R., Campos, F. G., Ferreira, G., Chacón, I. D. C., & Marques, M. O. M. (2019). Factors influencing the production and chemical composition of essential oils in aromatic plants from Brazil. Essential Oil Research, 19–47. https://doi.org/10.1007/978-3-030-16546-8_2

Caputo, L., Smeriglio, A., Trombetta, D., Cornara, L., Trevena, G., Valussi, M., Fratianni, F., Feo, V., & Nazzaro, F. (2020). Chemical composition and biological activities of the essential oils of Leptospermum petersonii and Eucalyptus gunnii. Frontiers in Microbiology, 11, 1–15. https://doi.org/10.3389/fmicb.2020.00409

Chaturvedi, T., Singh, S., Nishad, I., Kumar, A., Tiwari, N., Tandon, S., Saikia, D., & Verma, R. S. (2019). Chemical composition and antimicrobial activity of the essential oil of senescent leaves of guava (Psidium guajava L.). Natural Product Research, 35, 1393-1397. https://doi.org/10.1080/14786419.2019.1648462

Dayan, F. E., Cantrell, C. L., & Duke, S. O. (2009). Natural products in crop protection. Bioorganic and Medicinal Chemistry, 17(12), 4022–4034. https://doi.org/10.1016/j.bmc.2009.01.046

Dayan, F. E., & Duke, S. O. (2014). Natural compounds as next-generation herbicides. Plant Physiology, 166(3), 1090–1105. https://doi.org/10.1104/pp.114.239061

Dias, J. D. F. G., Miguel, O. G., & Miguel, M. D. (2009). Composition of essential oil and allelopathic activity of aromatic water of Aster lanceolatus Willd. (Asteraceae). Brazilian Journal of Pharmaceutical Sciences, 45(3), 469–474. https://doi.org/10.1590/S1984-82502009000300012

Duke, S. O., & Oliva, A. (2004). Mode of action of phytotoxic terpenoids. In H. Macias, F., Galindo, J., Molinillo, J., Cutler (Ed.), Allelopathy: Chemistry and mode of action of allelochemicals. CRC Press. https://doi.org/10.1201/9780203492789.ch10

Duke, Stephen O., Romagni, J. G., & Dayan, F. E. (2000). Natural products as sources for new mechanisms of herbicidal action. Crop Protection, 19, 583–589. https://doi.org/10.1016/S0261-2194(00)00076-4

Durazzini, A. M. S., Machado, C. H. M., Fernandes, C. C., Willrich, G. B., Crotti, A. E. M., Candido, A. C. B. B., Magalhães, L. G., Squarisi, I. S., Ribeiro, A. B., Tavares, D. C., Martins, C. H. G., & Miranda, M. L. D. (2019). Eugenia pyriformis Cambess: a species of the Myrtaceae family with bioactive essential oil. Natural Product Research. https://doi.org/10.1080/14786419.2019.1669031

El-Ghamery, A. A., El-Kholy, M. A., & Abou El-Yousser, M. A. (2003). Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 537, 29-41. https://doi.org/10.1016/S1383-5718(03)00052-4

Fagodia, S. K., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Industrial Crops and Products, 108, 708–715. https://doi.org/10.1016/j.indcrop.2017.07.005

Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

Giunti, G., Campolo, O., Laudani, F., Zappalà, L., & Palmeri, V. (2021). Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae). Industrial Crops and Products, 162, 113257. https://doi.org/10.1016/j.indcrop.2021.113257

Gruľová, D., Caputo, L., Elshafie, H. S., Baranová, B., De Martino, L., Sedlák, V., Gogaľová, Z., Poráčová, J., Camele, I., & Feo, V. (2020). Thymol chemotype Origanum vulgare L. essential oil as a potential selective bio-based herbicide on monocot plant species. Molecules, 25(3), 595. https://doi.org/10.3390/molecules25030595

Habermann, E., Pereira, V. D. C., Imatomi, M., Pontes, F. C. & Gualtieri, S. C. J. (2017). In vitro herbicide activity of crude and fractionated leaf extracts of Blepharocalyx salicifolius (Myrtaceae). Brazilian Journal of Botany, 40, 33-40. https://doi.org/10.1007/s40415-016-0317-4

Harashima, H., & Schnittger, A. (2010). The integration of cell division, growth and differentiation. Current Opinion in Plant Biology, 13(1), 66–74. https://doi.org/10.1016/j.pbi.2009.11.001

Harborne, J. B., & Tomas-Barberan, F. A. (1990). Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press.

Hayes, W. B. (1953). Fruit Growing in India. Allahabad.

Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423–430. https://doi.org/10.1016/j.ecoenv.2017.04.041

Ibrahim, M., Farooq, T., Hussain, N., Hussain, A., Gulzar, T., Hussain, I., Akash, M. S., & Rehmani, F. S. (2013). Acetyl and butyryl cholinesterase inhibitory sesquiterpene lactones from Amberboa ramosa. Chemistry Central Journal, 7(1), 3–7. https://doi.org/10.1186/1752-153X-7-116

Inderjit, Wardle, D. A., Karban, R., & Callaway, R. M. (2011). The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology and Evolution, 26, 655-662. https://doi.org/10.1016/j.tree.2011.08.003

Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65. https://doi.org/10.1016/j.cropro.2015.03.004

Jana, A., & Biswas, S. M. (2011). Lactam nonanic acid, a new substance from Cleome viscosa with allelopathic and antimicrobial properties. Journal of Biosciences, 36(1), 27–35. https://doi.org/10.1007/s12038-011-9001-9

Jerônimo, L. B., da Costa, J. S., Pinto, L. C., Montenegro, R. C., Setzer, W. N., Mourão, R. H. V., da Silva, J. K. R., Maia, J. G. S., & Figueiredo, P. L. B. (2021). Antioxidant and cytotoxic activities of Myrtaceae essential oils rich in terpenoids from Brazil. Natural Product Communications, 16(2), 1934578X2199615. https://doi.org/10.1177/1934578X21996156

Khadhri, A., El Mokni, R., Almeida, C., Nogueira, J. M. F., & Araújo, M. E. M. (2014). Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Industrial Crops and Products, 52, 29–31. https://doi.org/10.1016/j.indcrop.2013.10.018

Lee, W. C., Mahmud, R., Noordin, R., Pillai Piaru, S., Perumal, S., & Ismail, S. (2013). Free radicals scavenging activity, cytotoxicity and anti-parasitic activity of essential oil of Psidium guajava L. leaves against Toxoplasma gondii. Journal of Essential Oil-Bearing Plants, 16(1), 32–38. https://doi.org/10.1080/0972060X.2013.764196

Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research, 682, 71-81. https://doi.org/10.1016/j.mrrev.2009.06.002

Nist standard reference database 69. (2011). NIST Chemistry WebBook. https://webbook.nist.gov/chemistry.

Maffei, M. E., Gertsch, J., & Appendino, G. (2011). Plant volatiles: production, function and pharmacology. Natural Product Reports, 28(8), 1359–1380. https://doi.org/10.1039/c1np00021g

Matoba, H., Mizutani, T., Nagano, K., Hoshi, Y., & Uchiyama, H. (2007). Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas, 144(6), 235–243. https://doi.org/10.1111/j.2007.0018-0661.02012x

Matsumoto, S. T., Mantovani, M. S., Malaguttii, M. I. A., Dias, A. L., Fonseca, I. C., & Marin-Morales, M. A. (2006). Genotoxicity and mutagenicity of water contaminated with tannery effluents as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genetics and Molecular Biology, 29, 148–158. https://doi.org/10.1590/S1415-47572006000100028

Mendes, L. A., Martins, G. F., Valbon, W. R., Souza, T. S., Menini, L., Ferreira, A., & Ferreira, M. F. S. (2017). Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Industrial Crops and Products, 108, 684–689. https://doi.org/10.1016/j.indcrop.2017.07.034

Navarro-Rocha, J., Andrés, M. F., Díaz, C. E., Burillo, J., & González-Coloma, A. (2020). Composition and biocidal properties of essential oil from pre-domesticated spanish Satureja montana. Industrial Crops and Products, 145, 111958. https://doi.org/10.1016/j.indcrop.2019.111958

Oliveira Jr., R. S. (2011). Mecanismos de Ação de Herbicidas in Biologia e Manejo de plantas Daninhas. Omnipax.

Pinheiro, P. F., Costa, A. V., Alves, T. A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., Oliveira, C. M. R., & Fontes, M. M. P. (2015). Phytotoxicity and cytotoxicity of essential oil from leaves of Plectranthus amboinicus, carvacrol, and thymol in plant bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981–8990. https://doi.org/10.1021/acs.jafc.5b03049

R Development Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Rajkumar, V., Gunasekaran, C., Paul, C. A., & Dharmaraj, J. (2020). Development of encapsulated peppermint essential oil in chitosan nanoparticles: characterization and biological efficacy against stored-grain pest control. Pesticide Biochemistry and Physiology, 170, 104679. https://doi.org/10.1016/j.pestbp.2020.104679

Ribas, P. P., & Matsumura, A. T. S. (2009). A química dos agrotóxicos: impacto sobre a saúde e meio ambiente. Revista Liberato, 10(14), 149–158. https://doi.org/10.31514/rliberato.2009v10n14.p149

Rice, E. L. (2012). Allelopathy. Academic press.

Ruilong, W., Shaolin, P., Rensen, Z., Ling, W. D., & Zengfu, X. U. (2009). Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha H.B.K. and allelopathic potential of β-caryophyllene. Allelopathy Journal, 24(1), 35–44.

Satyal, P., Paudel, P., Lamichhane, B., & Setzer, W. N. (2015). Leaf essential oil composition and bioactivity of Psidium guajava from Kathmandu, Nepal. American Journal of Essential Oils and Natural Products, 3(2), 11–14.

Sousa, S. M., Silva, P. S., Campos, J. M. S., & Viccini, L. F. (2009). Cytotoxic and genotoxic effects of two medicinal species of Verbenaceae. Caryologia, 62(4), 326-333 https://doi.org/10.1080/00087114.2004.10589698

Scalvenzi, L., Grandini, A., Spagnoletti, A., Tacchini, M., Neill, D., Ballesteros, J., Sacchetti, G., & Guerrini, A. (2017). Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) essential oil from Amazonian Ecuador: a chemical characterization and bioactivity profile. Molecules, 22(7), 1163. https://doi.org/10.3390/molecules22071163

Sharifi-Rad, J., Sureda, A., Tenore, G. C., Daglia, M., Sharifi-Rad, M., Valussi, M., Tundis, R., Sharifi-Rad, M., Loizzo, M. R., Ademiluyi, A. O., Sharifi-Rad, R., Ayatollahi, S. A., & Iriti, M. (2017). Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules, 22, 70. https://doi.org/10.3390/molecules22010070

Shu, J. C., Liu, J. Q., Chou, G. X., & Wang, Z. T. (2012). Two new triterpenoids from Psidium guajava. Chinese Chemical Letters, 23(7), 827–830. https://doi.org/10.1016/j.cclet.2012.05.018

Silveira, G. L., Lima, M. G. F., Dos Reis, G. B., Palmieri, M. J. & Andrade-Vieira, L. F. (2017). Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere, 178, 359–367. https://doi.org/10.1016/j.chemosphere.2017.03.048

Soliman, F. M., Fathy, M. M., Salama, M. M., & Saber, F. R. (2016). Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves. Bulletin of Faculty of Pharmacy, Cairo University, 54(2), 219–225. https://doi.org/10.1016/j.bfopcu.2016.06.003

Souza, T. S., Ferreira, Ferreira, M. S. F., Menini, L., Souza, J. R. C. L., Parreira, L. A., Cecon, P. R., & Ferreira, A. (2017). Essential oil of Psidium guajava: Influence of genotypes and environment. Scientia Horticulturae, 216, 38–44. https://doi.org/10.1016/j.scienta.2016.12.026

Taban, A., Saharkhiz, M. J., & Naderi, R. (2020). A natural post-emergence herbicide based on essential oil encapsulation by cross-linked biopolymers: characterization and herbicidal activity. Environmental Science and Pollution Research, 27(36), 45844–45858. https://doi.org/10.1007/s11356-020-10405-y

Vasconcelos, L. C., Santos, E. S., Bernardes, C. O., Ferreira, M. F. S., Ferreira, A., Tuler, A. C., Carvalho, J. A. M., Pinheiro, P. F., & Praça-Fontes, M. M. (2019). Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants. Environmental Science and Pollution Research, 26, 26216-26228. https://doi.org/10.1007/s11356-019-05912-6

Vaughn, S. F., & Spencer, G. F. (1993). Volatile monoterpenes as potential parent structures for new herbicides. Weed Science, 41, 114-119. https://doi.org/10.1017/s0043174500057672

Vokou, D., Douvli, P., Blionis, G. J., & Halley, J. M. (2003). Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. Journal of Chemical Ecology, 29(10), 2281–2301. https://doi.org/10.1023/A:1026274430898

Weli, A., Al-Kaabi, A., Al-Sabahi, J., Said, S., Hossain, M. A., & Al-Riyami, S. (2019). Chemical composition and biological activities of the essential oils of Psidium guajava leaf. Journal of King Saud University - Science, 31(4), 993–998. https://doi.org/10.1016/j.jksus.2018.07.021

Wilson, P. G. (2010). Myrtaceae in Flowering Plants. Eudicots. The Families and Genera of Vascular Plants. Springer.

Downloads

Publicado

21/07/2021

Como Citar

VASCONCELOS, L. C.; SANTOS, E. de S.; MENDES, L. A.; FERREIRA, M. F. da S.; PRAÇA-FONTES, M. M. Composição química, fitotoxicidade e citogenotoxicidade do óleo essencial de folhas de cultivares de Psidium guajava L. . Research, Society and Development, [S. l.], v. 10, n. 9, p. e6110917710, 2021. DOI: 10.33448/rsd-v10i9.17710. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17710. Acesso em: 27 nov. 2024.

Edição

Seção

Ciências Agrárias e Biológicas