Diferentes ancoragens ósseas para implantes cone Morse variando os comprimentos em maxila anterior: Uma análise in sílico

Autores

DOI:

https://doi.org/10.33448/rsd-v10i9.17729

Palavras-chave:

Implantes dentários; Análise de elementos finitos; Tecido ósseo

Resumo

O objetivo deste estudo foi avaliar a distribuição de estresse em implantes cone morse, no tecido ósseo e em coroas unitárias na região anterior da maxila, em diferentes ancoragens ósseas (convencional, bicortical e bicortical com levantamento de assoalho nasal) utilizando a metodologia de elementos finitos 3D variando o comprimento dos implantes (8.5mm, 10mm, 11,5mm). Três modelos 3D, incluindo o elemento #11, foram simulados usando o software InVesalius, Rhinoceros 3D e SolidWorks. Modelos de blocos ósseos foram reconstruídos a partir da tomografia computadorizada e simularam a instalação de um implante de 4mm de diâmetro e comprimentos acima mencionados, suportando coroa de zircônia cimentada. Os modelos 3D foram processados nos softwares de elementos finitos FEMAP e NeiNastran, utilizando uma carga de 178N foram aplicados a 0º, 30º e 60º, considerando o longo eixo do implante. Os resultados foram visualizados como mapas de tensão de von Mises, a tensão máxima principal e microdeformação. As ancoragens ósseas bicorticais apresentaram menor estresse e microdeformação do tecido ósseo quando comparadas à ancoragem óssea convencional. No entanto, não foram observadas diferenças entre a elevação bicortical e do assoalho nasal. Em relação aos implantes e componentes, a distribuição de tensões foi semelhante entre os modelos com pouco alívio de tensões na região apical dos implantes para ancoragem convencional. Concluímos cargas oblíquas apresentam pior comportamento biomecânico para tecido ósseo e implantes/componentes. As técnicas bicorticais (elevação bicortical e do assoalho nasal) devem ser preferidas durante a instalação do implante para reduzir o estresse e a microdeformação no tecido ósseo.

Referências

Ahn, S. J., Leesungbok, R., Lee, S. W., Heo, Y. K., & Kang, K. L. (2012). Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent. 107(6): 366-72.

Castro, D. S., et al. (2014). Comparative histological and histomorphometrical evaluation of marginal bone resorption around external hexagon and Morse cone implants: an experimental study in dogs. Implant Dent. 23(3):270-6.

Cruz, R. S., et al. (2018). Short implants versus longer implants with maxillary sinus lift. A systematic review and meta-analysis. Braz Oral Res.32:e86.

Cruz, R. S., et al. (2020). Clinical comparison between crestal and subcrestal dental implants: A systematic review and meta-analysis. J Prosthet Dent. S0022-3913(20)30691-0.

de Souza Batista, V. E., et al. (2017) Finite element analysis of implant-supported prosthesis with pontic and cantilever in the posterior maxilla. Comput Methods Biomech Biomed Engin. 20(6): 663-670. (2)

de Souza Batista, V. E, et al. (2017). Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent. 118(3): 363-371.

Faria PE, et al. (2016). Immediate loading of implants in the edentulous mandible: a multicentre study. Oral Maxillofac Surg. 20(4): 385-390.

Felisati G, et al. (2013). Sinonasal complications resulting from dental treatment: outcome-oriented proposal of classification and surgical protocol. Am J Rhinol Allergy. 27(4): e101-6.

Frost, H. M. (2003). Bone's mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 275: 1081-1101.

Goiato M. C, et al. (2014). Longevity of dental implants in type IV bone: a systematic review. Int J Oral Maxillofac Surg. 43(9):1108-16.

Gonçalves, T. M, et al. (2015). Long-term Short Implants Performance: Systematic Review and Meta-Analysis of the Essential Assessment Parameters. Braz Dent J. 26(4): 325-36.

Guida, L, et al. (2020). 6-mm-short and 11-mm-long implants compared in the full-arch rehabilitation of the edentulous mandible: A 3-year multicenter randomized controlled trial. Clin Oral Implants Res. 31(1):64-73

Han, H. C, et al. (2016). Primary implant stability in a bone model simulating clinical situations for the posterior maxilla: an in vitro study. J Periodontal Implant Sci. 46(4):254-65.

Huang, H.-L., et al. (2009). Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. The International Journal of Oral&Maxillofacial Implants. 24(3): 455–62.

Ivanoff, C. J., et al. (2000). Influence of bicortical or monocortical anchorage on maxillary implant stability: a 15-year retrospective study of Brånemark System implants. Int J Oral Maxillofac Implants; 15(1): 103–110.

Kan, B, et al. (2015). Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis. Int J Oral Maxillofac Surg. 44(7): 908-13.

Kfir, E, et al. (2012). Minimally invasive subnasal elevation and antral membrane balloon elevation along with bone augmentation and implants placement. J Oral Implantol. 38(4): 365-76.

Lazari, P. C., et al. (2014). Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis. J Prosthet Dent. 112(4):857-63.

Lekholm, U., & Zarb, G. A. (1985). Patient selection and preparation. In: Brånemark, P.I., Zarb, G.A., Albrektsson, T. (Eds.), Tissue-integrated Prostheses. Osseointegration in Clinical Dentistry, Quintessence, Chicago, pp. 199–209.

Lemos, C. A., et al. (2016). Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis. J Dent. 47:8-17.

Lemos, C. A. A., et al. (2018). Retention System and Splinting on Morse Taper Implants in the Posterior Maxilla by 3D Finite Element Analysis. Braz Dent J. 29(1):30-35.

Limbert, G., et al. (2010). Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study. J Biomech. 43(7):1251-61.

Mangano, F., et al. (2012). Single-tooth Morse taper connection implants placed in fresh extraction sockets of the anterior maxilla: an aesthetic evaluation. Clin Oral Implants Res. 23(11): 1302-7.

Mazor, Z., et al. (2012). Nasal floor elevation combined with dental implant placement. Clin Implant Dent Relat Res. 14(5): 768-71.

Minatel, L., et al. (2017). Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses. Mater Sci Eng C Mater Biol Appl. 71:35-42.

Pellizzer, E. P., et al. (2018). Biomechanical analysis of different implant-abutments interfaces in different bone types: An in silico analysis. Mater Sci Eng C Mater Biol Appl. 90: 645-650.

Santiago Junior, J F., et al. (2016). Finite element analysis on influence of implant surface treatments, connection and bone types. Mater Sci Eng C Mater Biol Appl. 63: 292-300.

Sertgöz, A. (1997) Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont. 10(1):19-27.

Sevimay, M., et al. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. Mar;93(3):227-34.

Sotto-Maior, B. S., et al. (2014). Biomechanical evaluation of subcrestal dental implants with different bone anchorages. Braz Oral Res.

Strub, J. R., et al. (2012). Prognosis of immediately loaded implants and their restorations: a systematic literature review. J Oral Rehabil. 39(9):704-17.

Telleman, G., et al. (2011). A systematic review of the prognosis of short (<10 mm) dental implants placed in the partially edentulous patient. J Clin Periodontol. 38(7): 667-76.

Toniollo, M. B., et al. (2017). A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges with Regular or Short Morse Taper Implants. Int J Oral Maxillofac Implants. 32(2): 372-376.

Verri, F. R., et al. (2016). Can the modeling for simplification of a dental implant surface affect the accuracy of 3D finite element analysis? Comput Methods Biomech Biomed Engin. 19(15): 1665-72.

Verri, F. R., et al. (2017). Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis. Comput Methods Biomech Biomed Engin. 20(2):193-200. (2)

Verri, F. R., et al. (2017). Biomechanical Three-Dimensional Finite Element Analysis of Single Implant-Supported Prostheses in the Anterior Maxilla, with Different Surgical Techniques and Implant Types. Int J Oral Maxillofac Implants. 32(4): e191-e198.

Verri, F. R., et al. Three-Dimensional Finite Element Analysis of Anterior Single Implant-Supported Prostheses with Different Bone Anchorages. ScientificWorldJournal. 2015; 2015:321528.

Downloads

Publicado

03/08/2021

Como Citar

OLIVEIRA, H. F. F. e .; LEMOS, C. A. .; CRUZ, R. S.; BATISTA, V. E. de S. .; SILVA, R. C. da .; VERRI , F. R. . Diferentes ancoragens ósseas para implantes cone Morse variando os comprimentos em maxila anterior: Uma análise in sílico. Research, Society and Development, [S. l.], v. 10, n. 9, p. e57010917729, 2021. DOI: 10.33448/rsd-v10i9.17729. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17729. Acesso em: 6 jul. 2024.

Edição

Seção

Ciências da Saúde