Study of the behavior of tomato pulp microcapsules (Lycopersicum esculentum var. Carmen) immersed in extra virgin olive oil: product interaction and stability

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.18042

Keywords:

Lycopene; Ionic gelation; Stability antioxidant.

Abstract

The objective of this work was to microencapsulate the tomato pulp by the ionic gelation technique with 2% (M2) and 5% (M5) sodium alginate, immerse in extra virgin olive oil, characterize and evaluate the stability of this product during 60 days of storage. The analysis of lycopene content, carotenoids, antioxidant activity (ABTS), total phenolics, peroxide index, oxidative stability (Rancimat) and thermal (DSC) were performed in triplícate. The Tukey test was applied at the 5% level of significance. The formulations analyzed remained stable during storage, there was no significant difference in the levels of lycopene and carotenoids. The formulation M2 obtained minor interaction between the microencapsulated and olive oil (A2) about the phenolic content and antioxidant activity, in this way kept phenolic compounds trapped. The insertion of microcapsules in extra virgin olive oil has not quality decreased. The range required by the legislation regarding peroxide index was maintained and the oxidation induction time was not influenced. The DSC thermal analysis for the formulations M2 and M5 obtained peaks of dehydration (100 – 109°C) and degradation (390 – 400°C) in the same range,  showing thermal characteristics similar. The microcapsule/oil complex maintained the quality of the oil and added nutritional value. The type of encapsulated, or encapsulant, can be modified and a microcapsule can be obtained with different release characteristics.

References

AOAC: Association of Official Analytical Chemists.(2003). Official methods of analysis of the Association of Official Analytical Chemists. 5ª ed. Arlington: A.O.A.C., 2003.

Baker, R. W. (1987). Controlled release of biologically active agents. New York: John Wiley & Sons

Boroski, M.; Visentainer, J. V.; Cottica, S. M. & Morais, D. R. (2015). Antioxidantes: princípios e métodos analíticos. Appris.

Brasil.(2005). Agência Nacional de Vigilância Sanitária. Resolução-rdc nº 272, de 22 de setembro de 2005. “Regulamento técnico para produtos de vegetais, produtos de frutas e cogumelos comestíveis”. Diário Oficial da União; Poder Executivo, 2005.

Brasil.(2012). Instrução Normativa nº 1, de 30 de janeiro de 2012. Regulamento Técnico do Azeite de Oliva e do Óleo de Bagaço de Oliva. Diário oficial da União: seção 1, Brasília, DF, n 23, p. 5, 01 de fev. 2012.

Carmo, E. L. D., de Barros Fernandes, R. V. & Borges, S. V. (2015). Microencapsulação por spray drying, novos biopolímeros e aplicações na tecnologia de alimentos. The Journal of Engineering and Exact Sciences, 1(2), 30-44.

Carvalho, W., Fonseca, M. E. D. N., Silva, H. R. D., Boiteux, L. S. & Giordano, L. D. B. (2005). Estimativa indireta de teores de licopeno em frutos de genótipos de tomateiro via análise colorimétrica. Horticultura Brasileira, 23(3), 819-825.

Choudhari, S., Bajaj, I., Singhal, R. & Karwe, M. (2012). Microencapsulated lycopene for pre‐extrusion coloring of foods. Journal of Food Process Engineering, 35(1), 91-103.

Clinton, S. K. (1998). Lycopene: chemistry, biology, and implications for human health and disease. Nutrition Reviews, v. 56, n. 2 Pt 1, p. 35-51.

Costa-Rodrigues, J., Pinho, O. & Monteiro, P. R. R. (2018). Can lycopene be considered an effective protection against cardiovascular disease?. Food chemistry, 245, 1148-1153.

Di Mascio, P., Murphy, M. E. & Sies, H. (1991). Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. The American journal of clinical nutrition, 53(1), 194S-200S.

Fang, Z. & Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21(10), 510-523.

Fávaro-Trindade, C. S. Pinho, S., Rocha, G. A. (2008). Revisão: encapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, v.11, n. 2, p.103-112.

Goula, A. M. & Adamopoulos, K. G. (2012). A new technique for spray-dried encapsulation of lycopene. Drying Technology, 30(6), 641-652.

Ha, T. V. A., Kim, S., Choi, Y., Kwak, H. S., Lee, S. J.; Wen, J. & Ko, S. (2015). Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food chemistry, 178, 115-121.

IAL: Instituto Adolfo Lutz. (2005). Normas Analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos para análise de alimentos. 3ªed. São Paulo: IAL.

Jorge, R. O. (2010). Caracterização de azeites virgem extra gourmet varietais e blends comercializados no mercado do Rio Grande do Sul. Tese de doutorado, Programa de pós-graduação em Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel. Rio Grande do Sul, Brasil.

Laia, A. G. S. (2015). Estudo de filmes e hidrogéis a base de alginato e goma gelana visando aplicações na regeneração de discos intervertebrais. Dissertação de Mestrado, Programa de pós-graduação em Engenharia de Materiais, Instituto Federal de Minas Gerais, Minas Gerais, Brasil.

Lichtenthaler, H. K. (1987). Clorofilas e carotenóides: pigmentos de biomembranas fotossintéticas. Methods in enzymology , 148 , 350-382.

Mirzaei, H.; Pourjafar, H. & Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La and sensory properties in Iranian white brined cheese. Food Chemistry, 132(4), 1966-1970.

Palozza, P. A. O. L. A., Catalano, A., Simone, R. E., Mele, M. C. & Cittadini, A. (2012). Effect of lycopene and tomato products on cholesterol metabolism. Annals of Nutrition and Metabolism, 61(2), 126-134.

Passos, R.M., Santos, J., Silva, G.F., Pagani, A.A.C.(2021). Azeite de oliva com pérolas de tomate: avaliação sensorial, microbiológica e estabilidade da cor. Revista Brasileira de Agrotecnologia - ISSN 2317-3114 - (BRASIL) v. 11, n.2, p.498-504.

Ranveer, R. C., Gatade, A. A., Kamble, H. A. & Sahoo, A. K. (2015). Microencapsulation and storage stability of lycopene extracted from tomato processing waste. Brazilian archives of biology and technology, 58(6), 953-960.

Rocha, G. A.; Fávaro-Trindade, C. S. & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food and bioproducts processing, 90(1), 37-42.

Rocha, L. C. R. (2017). Desenvolvimento de micropartículas contendo suco de tomate via gelificação iônica. Dissertação de mestrado, Programa de pós-graduação em Engenharia de Biomateriais, Universidade Federal de Lavras. Minas Gerais, Brasil.

Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. ILSI Human Nutrition Institute, v. 64, p. 20005-5802.

Rodriguez-Amaya, D. B. (2002). Effects of processing and storage on food carotenoids. Sight and Life Newsletter, 3(Special Issue), 25-35.

Rodrigues, J. F. (2015). Azeites de oliva da região da Serra da Mantiqueira: estudo químico e sensorial para caracterização da qualidade. Dissertação de mestrado, Programa de pós-graduação em ciência de Alimentos, Universidade Federal de Lavras. Minas Gerais, Brasil.

Santos, S. I. F. (2010). Desenvolvimento de um azeite com aroma a limão. Dissertação de mestrado, Programa de pós-graduação em Biotecnologia, Universidade de Aveiro, Aveiro, Portugal.

Silva, F. D. A. S. & de Azevedo, C. A. V. (2009). Principal Components Analysis in the Software Assistat-Statistical Assistance. In 7th World Congress on Computers in Agriculture Conference Proceedings, 22-24 June 2009, Reno, Nevada (p. 1). American Society of Agricultural and Biological Engineers.

Silva, F. C., da Fonseca, C. R., de Alencar, S. M., Thomazini, M., de Carvalho Balieiro, J. C., Pittia, P. & Favaro-Trindade, C. S. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28-36.

Smitha, B., Sridhar, S. & Khan, A. A. (2005). Chitosan–sodium alginate polyion complexes as fuel cell membranes. European Polymer Journal, 41(8), 1859-1866.

Swain, T. & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63-68.

Vallverdú-Queralt, A., Medina-Remón, A., Casals-Ribes, I., Andres-Lacueva, C., Waterhouse, A. L. & Lamuela-Raventos, R. M. (2012). Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT-Food Science and Technology, 47(1), 154-160.

Waterhouse, A. L. (2002). Determination of total phenolics. Current protocols in food analytical chemistry, 6(1), I1-1.

Zu, K., Mucci, L., Rosner, B. A., Clinton, S. K., Loda, M., Stampfer, M. J. & Giovannucci, E. (2014). Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. Journal of the National Cancer Institute, 106(2), djt430.

Published

09/10/2021

How to Cite

PASSOS, R. M. dos .; SANTOS, J. dos .; TELES, A. R. S. .; SILVA, G. F. da .; PAGANI, A. A. C. . Study of the behavior of tomato pulp microcapsules (Lycopersicum esculentum var. Carmen) immersed in extra virgin olive oil: product interaction and stability . Research, Society and Development, [S. l.], v. 10, n. 13, p. e150101318042, 2021. DOI: 10.33448/rsd-v10i13.18042. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18042. Acesso em: 20 apr. 2024.

Issue

Section

Exact and Earth Sciences