Influência do fluido corpóreo simulado (normal e inflamatório) na resistência à corrosão do titânio anodizado

Autores

DOI:

https://doi.org/10.33448/rsd-v10i10.18606

Palavras-chave:

Titânio; Implantes Dentários; Corrosão; Fluido corporal.

Resumo

O titânio têm sido amplamente utilizado como biomateriais, principalmente em implantáveis, onde a osseointegração e a resistência à corrosão são necessárias. Estudos têm mostrado que a espessura e a aspereza dos óxidos de titânio porosos estão relacionadas à osseointegração. De acordo com a literatura, as melhores condições de anodização para obtenção de nanotubos em óxido de titânio são a utilização de uma tensão de 10 V em um eletrólito que contém 0,15% de HF em H3PO4 (p/v). Neste estudo, o objetivo foi avaliar o desempenho corrosivo no eletrólito de fluido corporal simulado (SBF) em amostras de titânio anodizado de 1 mol.L-1 H3PO4 e 0,15% de HF (p/v) em 1 mol de L-1 H3PO4. Amostras de titânio de grau 2 comercialmente puro foram usadas para realizar essas avaliações. As amostras foram analisadas por microscopia eletrônica de varredura, microscopia de força atômica e testes de corrosão eletroquímica em condições inflamatórias simuladas e saudáveis. A hidrofobicidade dos óxidos foi testada pelo teste de gota séssil, também utilizando SBF. Os resultados mostram que os óxidos obtidos no eletrólito de H3PO4, óxidos do tipo barreira, apresentam melhor desempenho do que os óxidos porosos obtidos no eletrólito de H3PO4/HF. O óxido barreira apresentam mais características de biomaterial que o óxido poroso. Esses resultados são consistentes com estudos anteriores, e se destacam principalmente em relação aos testes realizados em condições inflamatórias, mais agressivas ao biomaterial.

Referências

Albuquerque, A. R., Santos, I. M. G., & Sambrano, J. R. (2014). STRUCTURAL AND ELECTRONIC PROPERTIES OF ANATASE TiO 2 THIN FILMS: PERIODIC B3LYP-D* CALCULATIONS IN 2D SYSTEMS. Química Nova, 37(8), 1318–1323. Retrieved from http://www.gnresearch.org/doi/10.5935/0100-4042.20140187

Almeida, P. C., & Reis, A. G. (2018). O titânio e suas ligas na implantodontia atual e sua caracterização diante das opções de tratamento de superfície Titanium and its alloys in the current implantology and its characterization in front. ClipeOdonto, 9(1), 66–72.

Ammar, S., Ramesh, K., Vengadaesvaran, B., Ramesh, S., & Arof, A. K. (2016). Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Progress in Organic Coatings, 92, 54–65. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0300944015303751

Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1044532307000966

Araújo, T. De, & Couto, A. (2004). Estudo do aço inoxidável aplicado como implante ortopédico. Revista Mackenzie, 20. Retrieved from http://www.mackenzie.br/fileadmin/Graduacao/EE/Revista_on_line/aco_inoxidavel.pdf

Babior, B. M., Kipnes, R. S., & Curnutte, J. T. (1973). Biological Defense Mechanisms. The Production by Leukocytes of Superoxide, a Potential Bactericidal Agent. Journal of Clinical Investigation, 52(3), 741–744. Retrieved from http://www.jci.org/articles/view/107236

Bohner, M., & Lemaitre, J. (2009). Can bioactivity be tested in vitro with SBF solution? Biomaterials, 30(12), 2175–2179. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0142961209000167

Bojinov, M., Betova, I., & Karastoyanov, V. (2020). Modeling barrier film growth and dissolution on titanium based on EIS, XPS and photocurrent data. Electrochimica Acta, 344, 136137. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0013468620305296

Brånemark, P.-I., Breine, U., Adell, R., Hansson, B. O., Lindström, J., & Ohlsson, Å. (1969). Intra-Osseous Anchorage of Dental Prostheses: I. Experimental Studies. Scandinavian Journal of Plastic and Reconstructive Surgery, 3(2), 81–100. Retrieved from http://www.tandfonline.com/doi/full/10.3109/02844316909036699

Brooks, E. K., Brooks, R. P., & Ehrensberger, M. T. (2017). Effects of simulated inflammation on the corrosion of 316L stainless steel. Materials Science and Engineering: C, 71, 200–205. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0928493116316587

Brooks, E., Tobias, M., Krautsak, K., & Ehrensberger, M. (2014). The influence of cathodic polarization and simulated inflammation on titanium electrochemistry. Journal of Biomedical Materials Research - Part B Applied Biomaterials.

Bruno Serafim Parra, Ronaldo Crosio Gennari, F. G. M., & Boschi, A. O. (2006). Rugosidade Superficial de Revestimentos Cerâmicos. Cerâmica Industrial, 11(2), 16–18.

C.J.DELL’OCA, D.L.PULFREY, & L.YOUNG. (1971). Anodic Oxide Films. Physics of Thin Films, 6, 1–79.

Cao, Z., Kong, G., Che, C., & Wang, Y. (2017). Influence of Nd addition on the corrosion behavior of Zn-5%Al alloy in 3.5wt.% NaCl solution. Applied Surface Science, 426, 67–76. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0169433217321001

Casagrande, R. B., Kunst, S. R., Beltrami, L. V. R., Aguzzoli, C., Brandalise, R. N., & de Fraga Malfatti, C. (2018). Pretreatment effect of the pure titanium surface on hybrid coating adhesion based on tetraethoxysilane and methyltriethoxysilane. Journal of Coatings Technology Research, 1–18.

Catauro, M., Bollino, F., Papale, F., Giovanardi, R., & Veronesi, P. (2014). Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants. Materials Science and Engineering C, 43, 375–382. Elsevier B.V.

Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering R: Reports, 87, 1–57. Elsevier B.V.

Costa, L. J., Sousa, E. T. De, Lucena, F. L. De, Cecilia, R., & Souza, V. De. (2015). Surface of Titanium Implants and your Ability to Stimulate Bone Formation : A Review of Literature. Odontol. Clín.-Cient., 14(4), 797–800.

Cremasco, A., Andrade, P. N., Contieri, R. J., Lopes, E. S. N., Afonso, C. R. M., & Caram, R. (2011). Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Materials & Design, 32(4), 2387–2390. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0261306910006382

Dalmau, A., Guiñón Pina, V., Devesa, F., Amigó, V., & Igual Muñoz, A. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, 102–111. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0013468613002028

Dubruel, P., Vanderleyden, E., Bergadà, M., De Paepe, I., Chen, H., Kuypers, S., Luyten, J., et al. (2006). Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces. Surface Science, 600(12), 2562–2571. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0039602806005073

Fadl-allah, S. A., & Mohsen, Q. (2010). Applied Surface Science Characterization of native and anodic oxide films formed on commercial pure titanium using electrochemical properties and morphology techniques. Applied Surface Science, 256(20), 5849–5855. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.apsusc.2010.03.058

Fonseca, C., & Barbosa, M. . (2001). Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corrosion Science, 43(3), 547–559. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0010938X00001074

Goriainov, V., Cook, R., M. Latham, J., G. Dunlop, D., & Oreffo, R. O. C. (2014). Bone and metal: An orthopaedic perspective on osseointegration of metals. Acta Biomaterialia, 10(10), 4043–4057. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1742706114002517

Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7), 844–854. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0109564106001850

Guilherme, A. S., Henriques, G. E. P., Zavanelli, R. A., & Mesquita, M. F. (2005). Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols. The Joournal of Prosthetic Dentistry, 93(4), 378–385.

Kang, S. M., Kong, B., Oh, E., Choi, J. S., & Choi, I. S. (2010). Osteoconductive conjugation of bone morphogenetic protein-2 onto titanium/titanium oxide surfaces coated with non-biofouling poly(poly(ethylene glycol) methacrylate). Colloids and Surfaces B: Biointerfaces, 75(1), 385–389.

Kasemo, B., & Lausmaa, J. (1985). Aspects of surface physics on titanium implants. Swedish dental journal. Supplement, 28, 19–36. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3904061

Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproducein vivo surface-structure changes in bioactive glass-ceramic A-W3. Journal of Biomedical Materials Research, 24(6), 721–734. Retrieved from http://doi.wiley.com/10.1002/jbm.820240607

Kokubo, Tadashi, & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915.

Kowalski, D., Kim, D., & Schmuki, P. (2013). TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today, 8(3), 235–264. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.nantod.2013.04.010

Kruger, J. (1979). Fundamental Aspects of the Corrosion of Metallic Implants. Corrosion and Degradation of Implant Materials (pp. 107-107–21). 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International. Retrieved from http://www.astm.org/doiLink.cgi?STP35940S

Kunst, S.R., Cardoso, H. R. P., Oliveira, C. T., Santana, J. A., Sarmento, V. H. V., Muller, I. L., & Malfatti, C. F. (2014). Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. Applied Surface Science, 298, 1–11. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0169433213021089

Kunst, Sandra Raquel, Graef, T. F., Mueller, L. T., Morisso, F. D. P., Carone, C. L. P., Fuhr, L. T., Oliveira, C. T., et al. (2020). Superficial treatment by anodization in order to obtain titanium oxide nanotubes applicable in implantology. Matéria (Rio de Janeiro), 25(4). Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000400331&tlng=en

Liu, Z., Liu, H., Zhong, X., Hashimoto, T., Thompson, G. E., & Skeldon, P. (2014). Surface & Coatings Technology Characterization of anodic oxide growth on commercially pure titanium in NaTESi electrolyte. Surface & Coatings Technology, 258, 1025–1031. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.surfcoat.2014.07.036

Lütjering, Gerd, Williams, J. C. (2007). Titanium. Engineering Materials, Processes (2nd ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from http://link.springer.com/10.1007/978-3-540-73036-1

Marino, C. E. B., & Mascaro, L. H. (2011). Electrochemical Tests to Evaluate the Stability of the Anodic Films on Dental Implants. International Journal of Electrochemistry, 2011, 1–7.

Marino, C. E. B., de Oliviera, E. M., Rocha-Filho, R. C., & Biaggio, S. R. (2001). On the stability of thin-anodic-oxide films of titanium in acid phosphoric media. Corrosion Science, 43(8), 1465–1476.

Oliveira, C. T. (2007). Caracterização microestrutural e Eletroquimica de óxidos de nióbio crescidos por anodização. Universidade Federal do Rio Grande do Sul Porto Alegre.

Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686–1691. Retrieved from https://pubs.acs.org/doi/10.1021/nl070678d

Park, J. H., Olivares-Navarrete, R., Baier, R. E., Meyer, A. E., Tannenbaum, R., Boyan, B. D., & Schwartz, Z. (2012). Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomaterialia, 8(5), 1966–1975. Acta Materialia Inc. Retrieved from http://dx.doi.org/10.1016/j.actbio.2011.11.026

Pentti, T., & Lundstrom, I. (1992). ical Considerations of Tita. Clinical Materials, 9, 115–134.

Pfeiffer, F., Herzog, B., Kern, D., & Scheideler, L. (2003). C ell reactions to microstructured implant surfaces. Microelectronic Engineering, 68, 913–922.

Prządka, D., Marcinkowska, A., & Andrzejewska, E. (2016). POSS-modified UV-curable coatings with improved scratch hardness and hydrophobicity. Progress in Organic Coatings, 100, 165–172. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0300944016300467

Raja, K. S., Misra, M., & Paramguru, K. (2005). Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta, 51, 154–165.

Ramires, I., & Guastaldi, A. C. (2002). Estudo do biomaterial Ti-6Al-4V empregando-se técnicas eletroquímicas e XPS. Química Nova, 25(1), 10–14.

Ribeiro Filho, S. L. M., Lauro, C. H., Bueno, A. H. S., & Brandão, L. C. (2016). Influence cutting parameters on the surface quality and corrosion behavior of Ti-6Al-4V alloy in synthetic body environment (SBF) using Response Surface Method. Measurement: Journal of the International Measurement Confederation, 88, 223–237.

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2017). Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium-aluminum-vanadium alloy. Journal of Applied Polymer Science, 134(46), 45470. Retrieved from http://doi.wiley.com/10.1002/app.45470

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2018). Development of Alkoxide Precursors-Based Hybrid Coatings on Ti-6Al-4V Alloy for Biomedical Applications : Influence of pH of Sol. Journal of Materials Engineering and Performance, 27(Ref 7), 2863–2874. Springer US.

Santana, J. A., Kunst, S. R., Oliveira, C. T., Bastos, A. A., Ferreira, M. G. S., & Sarmento, V. H. V. (2020). PMMA-SiO2 organic-inorganic hybrid coating application to Ti-6Al-4V alloy prepared through the sol-gel method. Journal of the Brazilian Chemical Society, 31(2), 409–420.

Science, C., Britain, G., Science, M., & Ng, N. (1988). Department of Metallurgy and Materials Science, The University of Nottingham, University Park, Nottingham NG7 2RD, U.K. Corrosion Science, 28(1), 43–56.

Shibata, Y., & Tanimoto, Y. (2015). A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. Journal of Prosthodontic Research, 59(1), 20–33. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1883195814001194

Simons, W., Hubin, A., & Vereecken, J. (1999). The role of electrochemical impedance spectroscopy (EIS) in the global characterisation of the reduction kinetics of hexacyanoferrate on anodised titanium. Electrochimica Acta, 44(24), 4373–4381. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S001346869900153X

Souza, J. C. M., Barbosa, S. L., Ariza, E. A., Henriques, M., Teughels, W., Ponthiaux, P., Celis, J.-P., et al. (2015). How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study. Materials Science and Engineering: C, 47, 384–393. Elsevier B.V. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0928493114007565

Variola, F., Brunski, J. B., Orsini, G., Tambasco de Oliveira, P., Wazen, R., & Nanci, A. (2011). Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale, 3(2), 335–353. Retrieved from http://xlink.rsc.org/?DOI=C0NR00485E

Vermesse, E., Mabru, C., & Arurault, L. (2013). Applied Surface Science Surface integrity after pickling and anodization of Ti – 6Al – 4V titanium alloy. Applied Surface Science, 285, 629–637. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.apsusc.2013.08.103

Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1–3), 69–117. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0001868697000407

Wen, C. (2015). Surface Coating and Modification of Metallic Biomaterials. Surface Coating and Modification of Metallic Biomaterials, 1(c), 1–431.

Wieland, M., Chehroudi, B., Textor, M., & Brunette, D. M. (2002). Use of Ti-coated replicas to investigate the effects on fibroblast shape of surfaces with varying roughness and constant chemical composition. Journal of Biomedical Materials Research, 60, 434–444.

Xing, J., Xia, Z., Hu, J., Zhang, Y., & Zhong, L. (2013). Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. CORROSION SCIENCE, 75, 212–219. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.corsci.2013.06.004

Yan, Y., Chibowski, E., & Szcześ, A. (2017). Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy. Materials Science and Engineering C, 70, 207–215.

Zhang, Z., Ge, B., Men, X., & Li, Y. (2016). Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 490, 182–188.

Zhou, C., Xu, S., Pi, P., Cheng, J., Wang, L., Yang, J., & Wen, X. (2018). Polyacrylate/silica nanoparticles hybrid emulsion coating with high silica content for high hardness and dry-wear-resistant. Progress in Organic Coatings, 121(April), 30–37. Elsevier.

Downloads

Publicado

07/08/2021

Como Citar

KUNST, S. R. .; CERVEIRA, D. de O.; FERREIRA, J. Z.; GRAEF, T. F. .; SANTANA, J. de A. .; CARONE, C. L. P. .; MORISSO, F. D. P. .; OLIVEIRA, C. T. . Influência do fluido corpóreo simulado (normal e inflamatório) na resistência à corrosão do titânio anodizado. Research, Society and Development, [S. l.], v. 10, n. 10, p. e122101018606, 2021. DOI: 10.33448/rsd-v10i10.18606. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18606. Acesso em: 22 nov. 2024.

Edição

Seção

Engenharias