A importância da microbiota intestinal e seu papel na infecção hospitalar

Autores

DOI:

https://doi.org/10.33448/rsd-v10i10.19166

Palavras-chave:

Infecção nosocomial; interação hospedeiro-microbiana; microbiota intestinal; Infecção hospitalar; Interações entre hospedeiro e microrganismos; Microbioma gastrointestinal.

Resumo

O trato gastrointestinal abriga a maior e mais complexa comunidade de microrganismos, sendo que essa colonização bacteriana do intestino humano por micróbios ambientais começa imediatamente após o nascimento. A microbiota intestinal possui diversas funções importantes e exclusivas, incluindo funções metabólicas, como a biotransformação de medicamentos e a digestão de compostos dietéticos; uma função de barreira da mucosa ao inibir a invasão de patógenos e uma função imunomoduladora. Por outro lado, algumas bactérias comensais podem ser patogênicas, causando infecções se o hospedeiro natural estiver comprometido e, em hospedeiros predispostos, a microbiota intestinal pode estar envolvida na infecção nosocomial. A translocação de bactérias através da parede intestinal é considerada uma das principais causas de infecções nosocomiais. O objetivo desta revisão é fornecer uma visão abrangente da microbiota intestinal humana, suas principais funções, seu papel na saúde e na doença, com abordagem da correlação entre a composição microbiana intestinal e as infecções nosocomiais.

Referências

Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76(3), 473–493. https://doi.org/10.1007/s00018-018-2943-4

Adlerberth, I., Lindberg, E., Åberg, N., Hesselmar, B., Saalman, R., Strannegård, I. L., & Wold, A. E. (2006). Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: An effect of hygienic lifestyle? Pediatric Research, 59(1), 96–101. https://doi.org/10.1203/01.pdr.0000191137.12774.b2

Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266–278. https://doi.org/10.1038/nrmicro2761

Ciobârcă, D., Cătoi, A. F., Copăescu, C., Miere, D., & Crișan, G. (2020). Bariatric surgery in obesity: Effects on gut microbiota and micronutrient status. Nutrients, 12(1). https://doi.org/10.3390/nu12010235

Cochetière, M.-F., & Montassier, E. (2011). The Human and His Microbiome Risk Factors for Infections. Metagenomics of the Human Body, 175–216.

Cordeiro, A. M., Oliveira, G. M. de, Rentería, J. M., & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Revista Do Colégio Brasileiro de Cirurgiões, 34(6), 428–431. https://doi.org/10.1590/S0100-69912007000600012

Coudray, C., Rambeau, M., Feillet-Coudray, C., Tressol, J. C., Demigne, C., Gueux, E., Mazur, A., & Rayssiguier, Y. (2005). Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: A stable isotope approach. Nutrition Journal, 4, 1–8. https://doi.org/10.1186/1475-2891-4-29

Dalben, M., Varkulja, G., Basso, M., Krebs, V. L. J., Gibelli, M. A., van der Heijden, I., Rossi, F., Duboc, G., Levin, A. S., & Costa, S. F. (2008). Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. Journal of Hospital Infection, 70(1), 7–14. https://doi.org/10.1016/j.jhin.2008.05.003

Daniel-Hoffmann, M., Sredni, B., & Nitzan, Y. (2012). Bactericidal activity of the organo-tellurium compound AS101 against Enterobacter cloacae. Journal of Antimicrobial Chemotherapy, 67(9), 2165–2172. https://doi.org/10.1093/jac/dks185

Darfeuille-Michaud, A., Jallat, C., Aubel, D., Sirot, D., Rich, C., Sirot, J., & Joly, B. (1992). R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infection and Immunity, 60(1), 44–55. https://doi.org/10.1128/iai.60.1.44-55.1992

Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E., & Knight, R. (2011). Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology, 140(6), 1713–1719. https://doi.org/10.1053/j.gastro.2011.02.011

Doré, J., & Corthier, G. (2010). Le microbiote intestinal humain. Gastroenterologie Clinique et Biologique, 34(SUPPL. 1), S7–S15. https://doi.org/10.1016/S0399-8320(10)70015-4

Elbashier, A. M., Malik, A. G., & Khot, A. P. (1998). Blood stream infections: Micro-organisms, risk factors and mortality rate in Qatif Central Hospital. Annals of Saudi Medicine, 18(2), 176–180. https://doi.org/10.5144/0256-4947.1998.176

Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9

Fine, R. L., Manfredo Vieira, S., Gilmore, M. S., & Kriegel, M. A. (2020). Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes, 11(2), 217–230. https://doi.org/10.1080/19490976.2019.1629236

Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 9(10), 577–589. https://doi.org/10.1038/nrgastro.2012.156

Flowers, S. A., Bhat, S., & Lee, J. C. (2020). Potential Implications of Gut Microbiota in Drug Pharmacokinetics and Bioavailability. Pharmacotherapy, 40(7), 704–712. https://doi.org/10.1002/phar.2428

Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews Urology, 7(12), 653–660. https://doi.org/10.1038/nrurol.2010.190

Fujiwara, S., Hashiba, H., Hirota, T., & Forstner, J. F. (1997). Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Applied and Environmental Microbiology, 63(2), 506–512. https://doi.org/10.1128/aem.63.2.506-512.1997

Inweregbu, K., Dave, J., & Pittard, A. (2005). Nosocomial infections. Continuing Education in Anaesthesia, Critical Care and Pain, 5(1), 14–17. https://doi.org/10.1093/bjaceaccp/mki006

Koulas, S. G., Stefanou, C. K., Stefanou, S. K., Tepelenis, K., Zikos, N., Tepetes, K., & Kapsoritakis, A. (2021). Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). Obesity Surgery, 31(1), 317–326. https://doi.org/10.1007/s11695-020-05074-2

Kuo, C. C., Wang, J. Y., Chien, J. Y., Chen, Y. F., Wu, V. C., Tsai, C. W., & Hwang, J. J. (2010). Nontraumatic pneumocephalus due to nosocomial Enterobacter cloacae infection. Diagnostic Microbiology and Infectious Disease, 66(1), 108–110. https://doi.org/10.1016/j.diagmicrobio.2009.03.024

Lee, C. J., Sears, C. L., & Maruthur, N. (2020). Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 1461(1), 37–52. https://doi.org/10.1111/nyas.14107

Lievin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J. R., & Servin, A. L. (2000). Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 47(5), 646–652. https://doi.org/10.1136/gut.47.5.646

Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovejoy, J. C., Gibbons, S. M., & Magis, A. T. (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-18871-1

Montalto, M., D’Onofrio, F., Gallo, A., Cazzato, A., & Gasbarrini, G. (2009). Intestinal microbiota and its functions. Digestive and Liver Disease Supplements, 3(2), 30–34. https://doi.org/10.1016/S1594-5804(09)60016-4

Mussi-Pinhata, M. M., & Do Nascimento, S. D. (2001). Neonatal nosocomial infections. [Portuguese]rInfecoes neonatais hospitalares. Jornal de Pediatria, 77(SUPPL. 1), S81–S96. https://doi.org/10.2223/JPED.222

Nagalingam, N. A., & Lynch, S. V. (2012). Role of the microbiota in inflammatory bowel diseases. Inflammatory Bowel Diseases, 18(5), 968–984. https://doi.org/10.1002/ibd.21866

Nyangahu, D. D., & Jaspan, H. B. (2019). Influence of maternal microbiota during pregnancy on infant immunity. Clinical and Experimental Immunology, 198(1), 47–56. https://doi.org/10.1111/cei.13331

Oliva, A., Aversano, L., de Angelis, M., Mascellino, M. T., Miele, M. C., Morelli, S., Battaglia, R., Iera, J., Bruno, G., Corazziari, E. S., Ciardi, M. R., Venditti, M., Mastroianni, C. M., & Vullo, V. (2020). Persistent systemic microbial translocation, inflammation, and intestinal damage during Clostridioides difficile infection. Open Forum Infectious Diseases, 7(1), 1–9. https://doi.org/10.1093/ofid/ofz507

Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69(12), 2232–2243. https://doi.org/10.1136/gutjnl-2020-322260

Park, H. K., Shim, S. S., Kim, S. Y., Park, J. H., Park, S. E., Kim, H. J., Kang, B. C., & Kim, C. M. (2005). Molecular analysis of colonized bacteria in a human newborn infant gut. Journal of Microbiology, 43(4), 345–353.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed.

Polage, C. R., Solnick, J. V., & Cohen, S. H. (2012). Nosocomial diarrhea: Evaluation and treatment of causes other than clostridium difficile. Clinical Infectious Diseases, 55(7), 982–989. https://doi.org/10.1093/cid/cis551

Possemiers, S., Bolca, S., Verstraete, W., & Heyerick, A. (2011). The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 82(1), 53–66. https://doi.org/10.1016/j.fitote.2010.07.012

Rasmussen, M. A., Thorsen, J., Dominguez-Bello, M. G., Blaser, M. J., Mortensen, M. S., Brejnrod, A. D., Shah, S. A., Hjelmsø, M. H., Lehtimäki, J., Trivedi, U., Bisgaard, H., Sørensen, S. J., & Stokholm, J. (2020). Ecological succession in the vaginal microbiota during pregnancy and birth. ISME Journal, 14(9), 2325–2335. https://doi.org/10.1038/s41396-020-0686-3

Rutella, S., & Locatelli, F. (2011). Intestinal dendritic cells in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 17(33), 3761–3775. https://doi.org/10.3748/wjg.v17.i33.3761

Scholtens, P. A. M. J., Oozeer, R., Martin, R., Amor, K. Ben, & Knol, J. (2012). The Early Settlers: Intestinal Microbiology in Early Life. Annual Review of Food Science and Technology, 3(1), 425–447. https://doi.org/10.1146/annurev-food-022811-101120

Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews.

Singh, T. P., Kaur, G., Kapila, S., & Malik, R. K. (2017). Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers in Microbiology, 8(MAR). https://doi.org/10.3389/fmicb.2017.00486

Sousa, T., Paterson, R., Moore, V., Carlsson, A., Abrahamsson, B., & Basit, A. W. (2008). The gastrointestinal microbiota as a site for the biotransformation of drugs. International Journal of Pharmaceutics, 363(1–2), 1–25. https://doi.org/10.1016/j.ijpharm.2008.07.009

Souza, C. S. C. de, Souza, R. C. de, Evangelista, J. do N., & Ferreira, J. C. de S. (2021). A importância da microbiota intestinal e seus efeitos na obesidade. Research, Society and Development, 10(6), e52110616086. https://doi.org/10.33448/rsd-v10i6.16086

Stecher, B., & Hardt, W. D. (2011). Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 14(1), 82–91. https://doi.org/10.1016/j.mib.2010.10.003

Ubeda, C., Taur, Y., Jenq, R. R., Equinda, M. J., Son, T., Samstein, M., Viale, A., Socci, N. D., Van Den Brink, M. R. M., Kamboj, M., & Pamer, E. G. (2010). Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 120(12), 4332–4341. https://doi.org/10.1172/JCI43918

Udager, A., Prakash, A., & Gumucio, D. L. (2010). Dividing the tubular gut: Generation of organ boundaries at the pylorus. In Progress in Molecular Biology and Translational Science (Vol. 96, Issue C). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381280-3.00002-6

Van Daele, E., Knol, J., & Belzer, C. (2019). Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 45(5–6), 613–648. https://doi.org/10.1080/1040841X.2019.1680601

Vandenplas, Y., Carnielli, V. P., Ksiazyk, J., Luna, M. S., Migacheva, N., Mosselmans, J. M., Picaud, J. C., Possner, M., Singhal, A., & Wabitsch, M. (2020). Factors affecting early-life intestinal microbiota development. Nutrition, 78, 110812. https://doi.org/10.1016/j.nut.2020.110812

Wilson, I. D., & Nicholson, J. K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Translational Research, 179, 204–222. https://doi.org/10.1016/j.trsl.2016.08.002

Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030440

Xu, J., Wang, L., Wang, K., & Zhou, Q. (2012). Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital. Physics Procedia, 33, 1197–1200. https://doi.org/10.1016/j.phpro.2012.05.197

Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3

Downloads

Publicado

16/08/2021

Como Citar

CRUZ, L. F. da .; SOUZA, I. L. A.; SOUZA, L. D. de .; ARAÚJO, M. G. de F. .; GRANJEIRO, P. A. A importância da microbiota intestinal e seu papel na infecção hospitalar. Research, Society and Development, [S. l.], v. 10, n. 10, p. e489101019166, 2021. DOI: 10.33448/rsd-v10i10.19166. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19166. Acesso em: 6 jul. 2024.

Edição

Seção

Artigos de Revisão