Estudo do perfil químico de chás de capim cidreira (Cymbopogon citratus Stapf) mediante a variação na forma de preparo

Autores

DOI:

https://doi.org/10.33448/rsd-v10i11.19413

Palavras-chave:

Capim limão. Extração. Fitoterápico. Perfil químico. Cromatografia Gasosa, microextração líquido-líquido dispersiva; Capim limão; Extração; Fitoterápico; Perfil químico; Cromatografia gasosa; Microextração líquido-líquido dispersiva.

Resumo

Neste trabalho foi investigado a influência das condições de preparo de “chás” de capim limão, no perfil químico do material extrativo obtido. Para tal, variou-se a forma de armazenamento das folhas e a metodologia empregada durante o processo de extração por infusão e decocção, aplicando planejamento fatorial e análise estatística. Foram construídas duas matrizes de análise relacionando: o emprego de vegetal fresco, seco ou refrigerado com o tipo de extração empregada, nas quais variou-se o tempo de contato entre material vegetal e água fervente. A análise dos extratos envolveu microextração líquido-líquida dispersiva, seguida por cromatografia gasosa acoplada à espectrometria de massas. O processamento dos dados indicou que, não há diferença estatística no uso de folhas secas ou frescas, enquanto emprego de folhas armazenadas, por 7 dias, em refrigerador, conduziu a extratos empobrecidos em fitofármacos. As infusões realizadas sem e com auxílio de ultrassonificação apresentaram capacidade de extração similar. A decocção conduziu a extratos com presença de metabólitos epoxidados. Quanto maior o tempo de contato entre solvente e material vegetal maiores foram os teores dos compostos bioativos extraídos. Posteriormente, construiu-se uma matriz para estudo univaridado, variando o tempo de extração entre 5 a 65 minutos, com intuito de determinar o ponto máximo de extração. Conclui-se que, a metodologia que garante a extração dos terpenos bioativos em maior proporção e a ausência dos produtos oxidados, no fitoterápico, é a infusão de folhas secas ou frescas do capim limão, onde estas a e água fervente permanecem em contacto por período de 25 minutos.

Referências

Adams, R. P. (2017). Identification of essential oil components by gas chromatography/mass spectrometry. 4ª ed. Carol Stream: Allured Publishing Corporation.

Allahverdiyev, A.; Duran, N.; Ozguven, M. & Koltas, S. (2004). Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 11, 657-661. Doi: 10.1016/j.phymed.2003.07.014.

ANVISA, Agência Nacional de Vigilância Sanitária. (2018) Primeiro Suplemento do Formulário de Fitoterápicos da Farmacopeia Brasileira. 1ª Ed. Brasília.

Bachiega, T. F. & Sforcin, J. M. (2011). Lemongrass and citral effect on cytokines production by murine macrophages. Journal Ethnopharmacology, 137 (1), 909-913. Doi: 10.1016/j.jep.2011.07.021.

Burke, Y. D.; Stark, M. J.; Roach, S. L.; Sen, S. E. & Crowell, P. L. (1997). Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids, 32 (2), 151-156. Doi: 10.1007/s11745-997-0019-y.

Caldas, S. S.; Gonçalves, F. F.; Primel, E. G.; Prestes, O. D.; Martins, M. L. & Zanella, R. (2011). Principais técnicas de preparo de amostras para determinação de resíduos de agrotóxicos em água por cromatografia líquida com detecção por arranjo de diodos e por espectrometria de massas. Química nova, 34 (9), 1604-1617. doi: 10.1590/S0100-4042201100090002.

Cantrell, C. L.; Franzblau, S. G. & Fischer, N. H. (2009). Antimycobacterial Tiwari, M. and P. Kakkar, Plant derived antioxidants–geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicology in vitro, 23 (2), 295-301. Doi: 10.1016/j.tiv.2008.12.014.

Costa, L. C. B.; Corrêa, R. M.; Cardoso, J. C. W.; Pinto, J. E. B. P.; Bertolucci, S. K. V. & Ferri, P. H. (2005). Secagem e fragmentação da matéria seca no rendimento e composição do óleo essencial de capim-limão. Horticultura brasileira, 23 (4), 956-959. doi: 10.1590/S0102-05362005000400019.

Chen, W. & Viljoen, A. M. (2010). Geraniol – A review of a commercially important fragrance material. South African Journal of Botany, 76, 643-651. Doi: 10.1016/j.sajb.2010.05.008.

Cunico, M. W. M.; Cunico, M. M.; Miguel, O. G.; Zawadzki, S. F.; Peralta-Zamora, P. & Volpato, N. (2008). Planejamento fatorial: uma ferramenta estatística valiosa para a definição de parâmetros experimentais empregados na pesquisa científica. Visão Acadêmica, 9 (1), 23-33. Doi: 10.5380/acd.v9i1.14635.

Escobar, P.; Leal, S. M.; Herrera, L. V.; Martinez, J. R. & Stashenko, E. (2010). Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Membro do Instituto Oswaldo Cruz, 105, 184-190. Doi: 10.1590/S0074-02762010000200013.

Falleh, H.; Ksouri, R.; Lucchessi, M. E.; Abdelly, C. & Magné, C. (2012). Ultrasound-Assisted Extraction: Effect of Extraction Time and Solvent Power on the Levels of Polyphenols and Antioxidant Activity of Mesembryanthemum edule L. Aizoaceae Shoots. Tropical Journal of Pharmaceutical Research, 11 (2), 243-249. Doi: 10.4314/tjpr.v11i2.1

Firmo, W. C. A; Menezes, V. J. M.; Passos, C. E. C.; Dias, C.N.; Alves, L. P. L.; Dias, I. C. L.; Neto, M. S. & Olea, R. S. G. (2011). Contexto histórico, uso popular e concepção científica sobre plantas medicinais. Caderno de Pesquisa, 18 (especial).

Friedman, M.; Henika, P. R. & Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of food protection, 65 (10), 1545-1560. Doi: 10.4315/0362-028X-65.10.1545.

Giteru, S. G.; Coorey, R.; Bertolatti, D.; Watkin, E.; Johnson, S. & Fang, Z. (2015). Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films. Food Chemitry, 168, 341-347. Doi: 10.1016/j.foodchem.2014.07.077.

Gnoatto, S. C. B.; Bassani, V. L.; Coelho, G. C. & Schenkel, E. P. (2007). Influence of the extraction methodology on the methylxanthines content of maté (Ilex paraguariensis a. St.-Hil., aquifoliaceae). Química Nova, 30 (2), 304-307.doi: 10.1590/S0100-40422007000200012.

Guimarães, L. G. de L.; Cardoso, M. das G.; Zacaroni, L. M. & Lima, R. K. (2008). Influência da luz e da temperatura sobre a oxidação de óleo essencial de capim-limão (Cymbopogon citratus stapf). Química nova, 31 (6), 1476-1480. Doi: 10.1590/S0100-40422008000600037.

Gurgel do Vale, T.; Furtado, E. C.; Santos Jr., J. G. & Viana, G. S. B. (2002). Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) N.E. Brown. Phytomedicine, 9 (8), 709-714. Doi: 10.1078/094471102321621304.

Herman, A.; Tambor, K. & Herman, A. (2016). Linalool Affects the Antimicrobial Efficacy of Essential Oils. Current Microbiology, 72 (2). Doi: 165-172;10.1007/s00284-015-0933-4.

Jeon, J.; Lee, C. & Lee, H. (2009). Food protective effect of geraniol and its congeners against stored food mites. Journal of food protection, 72 (7), 1468-1471. Doi: 10.4315/0362-028X-72.7.1468.

Li, X. J.; Yang, Y. J.; Li, Y. S.; Zhang, W. K. & Tang, H. B. (2016). α-Pinene, Linalool, and 1-Octanol Contribute to the Topical Anti-inflammatory and Analgesic Activities of Frankincense by Inhibiting COX-2. Journal of Ethnopharmacology, 179, 22-26. Doi: 10.1016/j.jep.2015.12.039.

Maeda, H.; Yamazaki, M. & Katagata, Y. (2012). Kuromoji (Lindera umbellata) Essential Oilinduced Apoptosis and Differentiation in Human Leukemia HL-60 Cell. Experimental Therapeutic Medicine, 3 (1), 49-52. Doi: 10.3892/etm.2011.357.

Maran, J. P.; Manikandan, S.; Nivetha, C. V. & Dinesh, R. (2017). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry, 10 (1), S1145-S1157. Doi: 10.1016/j.arabjc.2013.02.007.

Marques, T. H. C.; Marques, M. L. B. G. C. B.; Lima, D. dos S.; Siqueira, H. D. S.; Neto, J. D. N.; Branco, M. do S. B. G. C.; Souza, A. A.; Sousa, D. P. & Freitas, R. M. (2013). Evaluation of the neuropharmacological properties of nerol in mice. World Journal of Neurology, 3 (1). Doi: 10.4236/wjns.2013.31004.

Martinazzo, A. P.; Corrêa, P. C.; Resende, O. & Melo, E. de C. (2007). Análise e descrição matemática da cinética de secagem de folhas de capim-limão. Revista brasileira de engenharia agrícola e meio ambiente, 11 (3), 301–306. Doi: 10.1590/S1415-43662007000300009.

Meesters, R. J. W.; Duisken, M. & Hollender, J. (2007). Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: Indication of biological epoxidation. Journal of Xenobiotics, 37 (6), 604-617. Doi: 10.3109/00498250701393191.

Negrelle, R. R. B. & Gomes, E. C. (2007). Cymbopogon citratus (DC.) Stapf : chemical composition and biological activities. Revista Brasileira de Plantas Medicinais, 9 (1), 80-92.

Nicolli, K. P.; Welke, J. E.; Closs, M.; Caramão, E. B.; Costa, G.; Manfroi, V. & Zini, C. A. (2015). Characterization of the volatile profile of Brazilian Moscatel Sparkling wines through solid phase microextraction and gas chromatography. Journal of Brazilian Chemistry Society, 0, 1-20. Doi: 10.5935/0103-5053.20150110.

Nishiyama, M. F.; Costa, M. A. F.; Costa, A. M.; Souza, C. G. M.; Boer, C. G.; Bracht, C. K. & Peralta, R. M. (2010). Brazilian green tea (Camellia sinensis var assamica): effect of infusion time, mode of packaging and preparation on the extraction efficiency of bioactive compounds and on the stability of the beverage. Ciência e Tecnologia dos Alimentos, 30 (1), 191-196. Doi: 10.1590/S0101-20612010000500029

Oliveira, J. B. de; Machado, A. M. de R., Nelson, D. L. & Lucas, E. M. F. (2020). Extraction of bioactive metabolites from sucupira seeds (Pterodon emarginatus) using cachaça. RSD [Internet], 9 (11), e2109119795. Doi: 10.33448/rsd-v9i11.9795.

Oliveira, J. B. de; Silva, B. F. L. da; Machado, A. M. de R.; Lucas, E. M. F. (2020). Influence of the storage conditions of sucupira´s seeds alcoolatures (Pterodon emarginatus) in the presence of their bioactive metabolites. RSD [Internet], 9 (11), e3509119833. Doi: 10.33448/rsd-v9i11.9833.

Oyedele, A. O.; Gbolade, A. A.; Sosan, M. B.; Adewoyin, F. B.; Soyelu, O. L. & Orafidiya, O. O. (2002). Formulation of an effective mosquito-repellent topical product from lemongrass oil. Phytomedicine, 9 (3), 259-262. Doi: 10.1078/0944-7113-00120.

Rao, V. S. N.; Menezes, A. M. S. & Viana, G. S. B. (1990). Effect of myrcene on nociception in mice. Journal of Pharmacy and Pharmacology, 42, 877-878. Doi: 10.1111/j.2042-7158.1990.tb07046.x.

Robbers, J. E.; Speedie, M. K. & Tyler, V. E. (1996). Pharmacognosy and pharmacobiotechnology. Baltimore: Williams & Wilkins.

Rodrigues, A. B. L. & Almeida, S. S. M. S. (2018). Identificação do mirceno em óleos essenciais por espectroscopia de massas: uma revisão sistemática. Revista de biologia e ciência da terra, 18 (1); 16-24.

Rufino, A. T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C. & Mendes, A. F. (2015). Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. European Journal of Pharmacology, 750 (5), 141-150. Doi: 10.1016/j.ejphar.2015.01.018.

Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B. & Mann, A. S. M. (2011). Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). Journal of Advanced Pharmaceutical Technology e Research, 2 (1), 3-8. Doi: 10.4103/2231-4040.79796.

Si, W.; Gong, J.; Zhou, T.; Yu, H.; Poppe, C.; Johnson, R. & Du, Z. (2006). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. Journal of Applied Microbiology, 100 (2), 296-305. Doi: 10.1111/j.1365-2672.2005.02789.x.

Silverstein, R. M.; Webster, F. X. & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds. 7ª ed. Nova Iorque: John Wiley & Sons.

Simões, C. M. O.; Schenkel, E. P.; Mello, J. C. P. de; Menenzt, L. A. & Petrovick, P. R. (2017). Farmacognosia do Produto natural ao Medicamento. 1ª ed. Porto Alegre: Artmed.

Singi, G.; Damasceno, D. D.; D'andréa, E. D. & Silva, G. A. (2005). Efeitos agudos dos extratos hidroalcoólicos do alho (Allium sativum L.) e do capim-limão (Cymbopogon citratus (DC) Stapf) sobre a pressão arterial média de ratos anestesiados. Revista brasileira de farmacognosia, 15 (2), 94-97. doi: 10.1590/S0102-695X2005000200004

Sobral, M. V.; Xavier, A. L.; Lima, T. C. & Sousa, D. P. (2014). Antitumor Activity of Monoterpenes Found in Essential Oils. The Scientific World Journal, 1-35. Doi: 10.1155/2014/953451.

Stamp N. (2003). Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78 (1), 23-55. doi: 10.1086/367580.

Topal, U.; Sasaki, M.; Goto, M. & Otles, S. (2008). Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Internet Journal of Food Science Nutrition, 59, 619-634. Doi: 10.1080/09637480701553816.

Downloads

Publicado

29/08/2021

Como Citar

OLIVEIRA, J. B. de .; SILVA, B. F. L. da .; MACHADO, A. M. de R. .; GARCIA, C. F.; LUCAS, E. M. F. . Estudo do perfil químico de chás de capim cidreira (Cymbopogon citratus Stapf) mediante a variação na forma de preparo. Research, Society and Development, [S. l.], v. 10, n. 11, p. e234101119413, 2021. DOI: 10.33448/rsd-v10i11.19413. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19413. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas