Uso de caulim como um potencial adsorvente de baixo custo para a remoção do corante azul reativo BF-5G
DOI:
https://doi.org/10.33448/rsd-v10i12.20035Palavras-chave:
Adsorvente de baixo custo; Adsorção; Corantes Reativos; Águas residuais têxteis.Resumo
O objetivo deste trabalho foi utilizar o caulim como adsorvente de efluente sintético, à base de corante azul reativo BF-5G. Várias técnicas analíticas foram utilizadas para investigar a cristalinidade do material, morfologia, área superficial específica e grupo funcional fundamental do caulim. Em sequência, diferentes valores de pH foram estudados utilizando um sistema de banho finito. Na investigação da influência do pH, o adsorvente utilizado apresentou desempenho superior no valor de pH igual a 1. A partir desse valor ótimo, estudos cinéticos foram desenvolvidos com as condições ideais de pH, concentração e adsorventes (pH = 1, C0 = 50 mg/L e caulim usado como adsorvente). A percentagem de adsorção é máxima em pH 1 e diminui com a força básica da solução corante.
Referências
Ahmed, K., Rehman, F., Pires, C. T. G. V. M. T., Rahim, A., Santos, A. L., & Airold, C. (2016). Aluminum doped mesoporous silica SBA-15 for the removal of remazol yellow dye from water. Microporous and Mesoporous Materials, 236, 167-175. https://doi.org/10.1016/j.micromeso.2016.08.040
Ajayi, A. O., Atta, A. Y., Aderemi B. O. & Adefila S. S. (2010). Novel Method of Metakaolin Dealumination -Preliminary Investigation. Journal of Applied Sciences Research, 6 (10), 1539-1546.
Barbosa, A. dos S., & Rodrigues, M. G. F. (2019). Adsorção do corante azul reativo BF-5G em zeólitas: influência do pH. In: I Congresso Internacional de Meio Ambiente e Sociedade e III Congresso Internacional da Diversidade do Semiárido - I CONIMAS e III CONIDIS, 2019, Campina Grande. I Congresso Internacional de Meio Ambiente e Sociedade e III Congresso Internacional da Diversidade do Semiárido - I CONIMAS e III CONIDIS.
Barbosa, A. S., Monteiro, G. S., Rocha, L. N., Lima, E. G., & Rodrigues, M. G. (2019). Remoção do Corante Reativo vermelho por adsorção utilizando argilas branca e vermelha. Revista Gestão e Sustentabilidade Ambiental, 8, 539-561. http://dx.doi.org/10.19177/rgsa.v8e22019539-561
Caponi, N., Collazzo, G. C., Jahn, S. L., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2017). Use of Brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents. Journal of Materials Research, 20, 14-22. https://doi.org/10.1590/1980-5373-MR-2016-0673
Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G., & Busca G. (2010). Bulk and surface properties of commercial kaolins. Applied Clay Science, 48 (3), 446- 454. https://doi.org/10.1016/j.clay.2010.02.002
De Paula, L. R. N., De Paula, G. M., Santos, T. S., Clericuzi, G., & Rodrigues, M. G. F. (2020). Synthesis and application of MCM-41 molecular sieve for removal of reactive dyes. Materials Science Forum.
Foo, K. Y., & Hameed, B. H. (2010). An overview of dye removal via activated carbono adsorption process. Desalination and Water Treatment, 19, 255-274. https://doi.org/10.5004/dwt.2010.1214
Frost, R. L., & Johansson, U. (1998). Combination Bands in the Infrared Spectroscopy of Kaolins—A Drift Spectroscopic Study. Clays and Clay Minerals, 46, 466–477. https://doi.org/10.1346/CCMN.1998.0460411
Gao, L., Zhai, Y., Ma, H., & Wang, B. (2009). Degradation of cationic dye methylene blue by ozonation assisted with kaolin. Applied Clay Science, 46, 226-229. https://doi.org/10.1016/j.clay.2009.08.030
Hao, O. J., Kim, H. & Chiang, P.-C. (2010). Decolorization of Wastewater. Critical Reviews in Environmental Science and Technology, 30 (4), 449–505. https://doi.org/10.1080/10643380091184237
Jawad, A. H. & Abdulhameed, A. S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18, 100422. https://doi.org/10.1016/j.surfin.2019.100422
Jawad, A. H., Abdulhameed, A. S. & Mastuli, M. S. (2020). Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 14 (1), 305–313. https://doi:10.1080/16583655.2020.1736767
Jawad, A. H., Abdulhameed, A. S., Yaseen, Z. M., & Malek, N. N. A. (2020). Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. International Journal of Biological Macromolecules, 164, 4218-4230. https://doi:10.1016/j.ijbiomac.2020.08.201
Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange – G and methyl violet by adsorption onto bagasse fly ash- kinetic study equilibrium isotherm analyses. Dyes and pigments, 69, 210-223. http://dx.doi.org/10.1016/j.dyepig.2005.03.013
Medri, V., Papa, E., Mor, M., Vaccari, A., Natali, Murri, A., Piotte, L., & Landi, E. (2020). Mechanical strength and cationic dye adsorption ability of metakaolin-based geopolymer spheres. Applied Clay Science, 193, 105678. https://doi.org/10.1016/j.clay.2020.105678
Meigoli Boushehrian, M., Esmaeili, H. & Foroutan, R. (2020). Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. Journal of Environmental Chemical Engineering, 4, 103869. https://doi.org/10.1016/j.jece.2020.103869
Moore, D. M. & Reynolds, Jr. R. C. (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 179-201.
Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, A. S., Shuaib, D. T., & Mohammed, A. K. (2021). Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents. Environmental Nanotechnology, Monitoring & Management, 15 (3), 100414. https://doi.org/10.1016/j.enmm.2020.100414
Nallis, K., Katsumata, K., Isobe, T., Okada, K., Bone, P., & Othman, R. (2013). Preparation and UV-shielding property of Zr0.7Ce0.3O2–kaolinite nanocomposites. Applied Clay Science, 80-81, 147-153. https://doi.org/10.1016/j.clay.2013.06.004
Nandi, B. K., Goswami, A. & Purkait, M. K. (2009). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 161 (1), 387–395. https://doi.org/10.1016/j.jhazmat.2008.03.110
Pereira, M. F. R., Soares, S. F., Orfão, J. J. M., & Figueiredo, J. L. (2003). Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 41 (4), 811-821. doi:10.1016/S0008-6223(02)00406-2
Rocha, L. N., Barbosa, A. S., & Rodrigues, M. G. F. (2016). Remoção do corante vermelho BF-4B em sistema descontínuo utilizando argilas esmectíticas. XI Encontro Brasileiro de Adsorção.
Rodrigues, D. P. A., Tomaz P. F., Barbosa T. L. A., & Rodrigues M. G. F. (2018). Síntese de estrutura metalorgânica ZIF-8 e aplicação na remoção de corante reativo azul BF-5G. In: 1º Simpósio de Química do CCA/UFPB, Areia.
Rodrigues, D. P. A., Tomaz, P. F., Barbosa, T. L. A., Barbosa, A. S., & Rodrigues, M. G. F. (2018). Remoção do corante reativo azul BF-5G utilizando zeólita NaY modificada com brometo cetiltrimetilamônio. In: 1º Simpósio de Química do CCA/UFPB, Areia.
Russel, J. D. & Fraser, A. R. (1994). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer Netherlands.
Salleh, M. A, M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1-13. https://doi.org/10.1016/j.desal.2011.07.019
Silva, Ê. H. dos S., Rodrigues, D. P. A., & Rodrigues, M. G. F. (2019). Adsorção em batelada de corante reativo azul bifuncional 5G em carvão ativado comercial. In: 4 Congresso Nacional de Pesquisa e Ensino em Ciências CONAPESC, Campina Grande. http://editorarealize.com.br/editora/anais/conapesc/2019/TRABALHO_EV126_MD1_SA6_ID1508_30072019172642.pdf
Singh, H., Chauhan, G., Jain, A. K., & Sharma, S. K. (2017). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 5, 122-135. https://doi.org/10.1016/j.jece.2016.11.030
Tang, Q., Tang, X., Li Z., Chen, Y., Kou, N., & Sun Z. (2009). Adsorption and desorption behaviour of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. Journal of Chemical Technology & Biotechnology, 84 (9), 1371–1380. https://doi.org/10.1002/jctb.2192
Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Adsorption of congo red by three Australian kaolins. Applied Clay Science, 43 (3), 465–472. https://doi.org/10.1016/j.clay.2008.11.008
Wang, H., Li, C., Peng, Z., & Zhang, S. (2011). Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 105, 157-160. https://doi.org/10.1007/s10973-011-1385-0
Zhang, X., Lin, S., Lu, X. Q., & Chen Z. L. (2010). Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal, 163, 243-248. https://doi.org/10.1016/j.cej.2010.07.056
Zhou, C., Gao, Q., Luo, W., Zhou, Q., Wang, H., Yan, C., & Duan, P. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 52, 147–157. https://doi.org/10.1016/j.jtice.2015.02.014
Zhou, y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environ Pollut, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072
Zhu, H.-Y., Jiang, R., & Xiao L. (2010). Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Applied Clay Science, 48 (3), 522–526. https://doi.org/10.1016/j.clay.2010.02.003
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Antusia dos Santos Barbosa; Meiry Gláucia Freire Rodrigues; Diogo Pierre Rodrigues Alves
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.