Panorama mundial das pesquisas com robôs subaquáticos remotamente operados (ROV)
DOI:
https://doi.org/10.33448/rsd-v10i12.20462Palavras-chave:
Tecnologia; Investimento; Socioeconômico; Ambiental; Energia nuclear.Resumo
Veículos subaquáticos operados remotamente (ROVs) fazem parte de um grupo de tecnologias que vem sendo cada vez mais utilizados como ferramenta em pesquisas científicas. As aplicações para esses veículos são vastas e o trabalho tem por objetivo apresentar análises de âmbito socioeconômico e ambiental trazendo um panorama mundial sobre as pesquisas científicas que incluem os ROVs. Foi criada uma matriz de dados com pesquisa literária sendo incluídos 78 documentos publicados. As principais informações avaliadas foram continentes e países que publicam trabalhos, parcerias realizadas entre os países, se houve ou não financiamento para a realização do projeto, qual a área de estudo e aplicação e quais as características do ROV utilizado, especialmente se ele foi desenvolvido exclusivamente para o projeto ou se houve aquisição de equipamento já existente. Notamos que os países mais desenvolvidos são os que mais investem na tecnologia, tanto em número de publicações quanto em financiamentos, fato esse que pode ser justificado pelo compromisso de as entidades governamentais fazerem aportes constantes na pesquisa científica. Em contrapartida, países em desenvolvimento como Brasil e China vem apresentando ótimos resultados e crescimento na aplicação de recursos em ciência e tecnologia. Os benefícios do investimento nesta tecnologia refletem em toda a sociedade, gerando empregos, contribuindo para a economia nacional e incentivando a pesquisa, o conhecimento e a ciência.
Referências
Alcoforado, V., Marques, P. C., & Silva-Cavalcanti, J. S. (2013). Protótipo de ROV (Remotely Operated Vehicles) e suas aplicações em águas do semiárido: resultados preliminares. [apresentação em conferência]. XIII Jornada De Ensino, Pesquisa e Extensão, JEPEX 2013, UFRPE: http://www.eventosufrpe.com.br/2013/cd/resumos/R1185-1.pdf
Aristizábal, L. M., Rúa, S., Gaviria, C. E., Osorio, S. P., Zuluaga, C. A., Posada, N. L., & Vásquez, R. E. (2016). Design of an open source-based control platform for an underwater remotely operated vehicle. Dyna, 83(195), 198-205. https://doi.org/10.15446/dyna.v83n195.49828
Boutteau, R., Rossi, R., Qin, L., Merriaux, P., & Savatier, X. (2020). A vision-based system for robot localization in large industrial environments. Journal of Intelligent & Robotic Systems, 99(2), 359-370. https://doi.org/10.1007/s10846-019-01114-x
Caires, L. (2020). Nos países desenvolvidos, o dinheiro que financia a ciência na universidade é público. Jornal da USP. Disponível em:https://jornal.usp.br/ciencias/nos-paises-desenvolvidos-o dinheiro-que-financia-a-ciencia-e-publico/. Acessado em: 10 de set. 2020.
Cánovas-Molina, A., Montefalcone, M., Bavestrello, G., Cau, A., Bianchi, C.N., Morri, C., Canese, S., & Bo, M. (2016). A new ecological index for the status of mesophotic megabenthic assemblages in the Mediterranean based on ROV photography and video footage. Continental Shelf Research, 121, 13-20. https://doi.org/10.1016/J.CSR.2016.01.008
Carminatto, A. A. (2019). Complexidade do hábitat, caracterização e diversidade de peixes recifais da Ilha das Palmas e da Ilha do Mato (Guarujá/SP). [Dissertação de mestrado, Universidade Santa Cecília, Santos, Brasil]. https://unisanta.br/arquivos/mestrado/ecologia/dissertacoes/D issertacao_AMANDAAPARECIDACARMINATTO333.pdf
Carminatto, A.A., Rotundo, M.M., Butturi-Gomes, D., Barrella, W., & Junior, M. P. (2020). Effects of habitat complexity and temporal variation in rocky reef fish communities in the Santos estuary (SP), Brazil. Ecological Indicators, 108, 105728. https://doi.org/10.1016/j.ecolind.2019.105728
Centeno, M. L. (2007). Rovfurg-ii: Projeto e construção de um veículo subaquático não tripulado de baixo custo. [Dissertação de Mestrado, Universidade Federal do Rio Grande, Rio Grande, Brasil]. http://repositorio.furg.br/bitstream/handle/1/3480/Projeto%20e %20constru%C3%A7%C3%A3o%20de%20um%20ve%C3%ADculo%20subaqu%C3%A1tico%20n%C3%A3o%20tripulado%20de%20baixo%20custo.pdf?sequence=1
Chadwick Jr, W. W., Rubin, K. H., Merle, S. G., Bobbitt, A. M., Kwasnitschka, T., & Embley, R. W. (2019). Recent eruptions between 2012-2018 discovered at West Mata submarine volcano (NE Lau Basin, SW Pacific) and characterized by new ship, AUV, and ROV data. Frontiers in Marine Science, 6, 495. https://doi.org/10.3389/fmars.2019.00495
Chen, T. T., Paull, C. K., Liu, C. S., Klaucke, I., Hsu, H. H., Su, C. C., Gwiazda, R., & Caress, D. W. (2020). Discovery of numerous pingos and comet-shaped depressions offshore southwestern Taiwan. Geo-Marine Letters, 1-15. https://doi.org/10.1007/s00367-019-00577-z
Cho, B. H., Byun, S. H., Shin, C. H., Yang, J. B., Song, S. I., & Oh, J. M. (2004). KeproVt: underwater robotic system for visual inspection of nuclear reactor internals. Nuclear Engineering and Design, 231(3), 327-335. https://doi.org/10.1016/j.nucengdes.2004.03.012
Christ, R. D., & Wernli SR, R. L. (2014). The ROV manual: a user guide for remotely operated vehicles (2º ed.). Oxforf: Butterworth-Heinemann, 2014.
Cooke, N. J. (2006). Human factors of remotely operated vehicles. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(1), 166-169. https://doi.org/10.1177/154193120605000135
Gao, H., Jiao, X., Zhou, C., Shen, Q., & Yu, Y. (2011). Study on remote control underwater welding technology applied in nuclear power station. Procedia Engineering, 15, 4988-4993. https://doi.org/10.1016/j.proeng.2011.08.927
Hartill, É. C., Waller, R. G., & Auster, P. J. (2020). Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PloS one, 15(8), e0236945. https://doi.org/10.1371/journal.pone.0236945
Ho, G., Pavlovic, N., & Arrabito, R. (2011). Human factors issues with operating unmanned underwater vehicles. Human Factors and Ergonomics Society Annual Meeting Proceedings, 55(1). https://doi.org/10.1177/1071181311551088
Htun, T. Z., Suzuki, H., & García-Vallejo, D. (2020). Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF). Mechanism and Machine Theory, 153, 103961. https://10.1016/j.mechmachtheory.2020.103961
Hughes, S. J. M., Jones, D. O. B., Hauton, C., Gates, A. R., & Hawkins, L. E. (2010). An assessment of drilling disturbance on Echinus acutus var. norvegicus based on in-situ observations and experiments using a remotely operated vehicle (ROV). Journal of Experimental Marine Biology and Ecology, 395(1-2), 37-47, 2010. https://10.1016/J.JEMBE.2010.08.012
Iacono, C. L., Guillén, J., Guerrero, Q., Durán, R., Wardell, C., Hall, R. A., Aslam, T., Carterd,G. D. O., Galese, J., & Huvenne, V. A. (2020). Bidirectional bedform fields at the head of a submarine canyon (NE Atlantic). Earth and Planetary Science Letters, 542, 116321. https://doi.org/10.1016/j.epsl.2020.116321
Johansen, C., Macelloni, L., Natter, M., Silva, M., Woosley, M., Woolsey, A.,Diercks, A.R., Hill, J., Viso, R., Marty, E., Lobodin, V.V., Shedd, W., Joye, S.B., I.R. MacDonald, I.R., & Lobodin, V.V. (2020). Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: Green Canyon 600. Earth and Planetary Science Letters, 545, 116411. https://doi.org/10.1016/j.epsl.2020.116411
Koji, K. (1999). Underwater inspection robot-AIRIS 21®. Nuclear Engineering and Design, 188(3), 367-371. https://doi.org/10.1016/S0029-5493(99)00045-X
Kuppermann, A. (1994). Investimentos em ciência e tecnologia. Estudos Avançados, 8(20), 18-22. https://doi.org/10.1590/S0103-40141994000100005
Lapa, J. M., Pereira, F. D. S., de Cerqueira, E. V. G., de de Santana, D. E., & de Jesus, C. A. (2012). Aprimoramento na construção de um minissubmarino de monitoramento não tripulado de baixo custo. [apresentação em conferência]. VII CONNEPI-Congresso Norte Nordeste de Pesquisa e Inovação. https://propi.ifto.edu.br/ocs/index.php/connepi/vii/paper/viewFile/1746/2484
Lee, S. U., Choi, Y. S., Jeong, K. M., & Jung, S. (2006). Development of a Tele-operated Underwater Robotic System for maintaining a light-water type power reactor. 2006 IEEE SICE-ICASE International Joint Conference, 3017-3021. https://doi.org/10.1109/SICE.2006.315148
Lemaire, I. P. (1988). NOSC and Remotely Operated Vehicles (ROVs) and Autonomous Unmanned Vehicles (AUVs). Naval Ocean Systems Center: San Diego, CA, USA. https://apps.dtic.mil/sti/citations/ADA203356
Lima, J. S., Zalmon, I. R., & Love, M. (2019). Overview and trends of ecological and socioeconomic research on artificial reefs. Marine Environmental Research, 145, 81-96. https://doi.org/10.1016/j.marenvres.2019.01.010
Linley, T. D., Alt, C. H., Jones, D. O., & Priede, I. G. (2013). Bathyal demersal fishes of the Charlie-Gibbs Fracture Zone region (49°–54° N) of the Mid-Atlantic Ridge: III. Results from remotely operated vehicle (ROV) video transects. Deep Sea Research Part II: Topical Studies in Oceanography, 98, 407-411. https://doi.org/10.1016/j.dsr2.2013.08.013
Lorance, P., & Trenkel, V. M. (2006). Variability in natural behaviour, and observed reactions to an ROV, by mid-slope fish species. Journal of Experimental Marine Biology and Ecology, 332(1), 106-119. https://doi.org/10.1016/j.jembe.2005.11.007
Luo, Y., Tao, J., Sun, Q., Deng, L., & Deng, Z. (2018). A new underwater robot for crack welding in nuclear power plants. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), 77-82. https://doi.org/10.1109/ROBIO.2018.8665279
Lv, X. M., Liu, Y. F., Gao, H. B., Ding, L., Tao, J. G., Xia, K. R., & Deng, Z. Q. (2014). Design of underwater welding robot used in nuclear plant. Key Engineering Materials, 620, 484-489. https://doi.org/10.4028/www.scientific.net/KEM.620.484
Manoukian, S., Fabi, G., & Naar, D.F. (2011). Multibeam investigation of an artificial reef settlement in the adriatic sea (Italy) 33 years after its deployment. Brazilian Journal of Oceanography, 59(SPE1), 145-153. https://doi.org/10.1590/S1679-87592011000300016
NUTECMAR - Núcleo de Tecnologia Marinha e Ambiental, (2020). ROV Training - Nível 1 (1º ed.). Apostila didática: São Paulo.
Park, J.Y., Cho, B. H., & Lee, J.K. (2009). Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control. Nuclear Engineering and Design, 239(11), 2543-2550. https://doi.org/10.1016/j.nucengdes.2009.07.029
Pereira-Filho, G. H., Amado-Filho, G. M., Guimarães, S. M., Moura, R.L., Sumida, P. Y., Abrantes, D. P., Bahia, R. G., Güth, A. Z., Jorge, R. R., & Francini Filho, R. B. (2011). Reef fish and benthic assemblages of the Trindade and Martin Vaz island group, southwestern Atlantic. Brazilian Journal of Oceanography, 59(3), 201-212. https://doi.org/10.1590/S1679-87592011000300001
Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E., & Youngbluth, M. (2010). Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep Sea Research Part II: Topical Studies in Oceanography, 57(1-2), 111-126. https://doi.org/10.1016/J.DSR2.2009.08.010
Souza, M. T. de, Silva, M. D. da, & Carvalho, R. de. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8 (1), 102–106. https://doi.org/10.1590/s1679-45082010rw1134
Souza, W. L. de (2010). Sistema de propulsores para um ROV-subaquático. [Trabalho de Conclusão de Curso, Centro Universitário das Faculdades Associadas de Ensino, São João da Boa Vista, Brasil]. https://docplayer.com.br/7897932-Centro-universitario-das-faculdades-associadas-de-ensino-sistema-de-propulsores-para-um-rov-subaquatico.html
Smolowitz, R. J., Patel, S. H., Haas, H. L., & Miller, S. A. (2015). Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. Journal of Experimental Marine Biology and Ecology, 471, 84-91. https://doi.org/10.1016/j.jembe.2015.05.016
Tahir, A. M., & Iqbal, J. (2014). Underwater robotic vehicles: latest development trends and potential challenges. Science International, 26 (3), 2014. http://www.sci-int.com/pdf/636639120492572343.pdf
Tehrani, N. H., Heidari, M., Zakeri, Y., & Ghaisari, J. (2010). Development, depth control and stability analysis of an underwater Remotely Operated Vehicle (ROV). IEEE ICCA. https://doi.org/10.1109/ICCA.2010.5524051
Tollefson, J. (2018). China declared largest source of research articles. Nature, 553(7689), 390-39. https://doi.org/10.1038/d41586-018-00927-4
Vásquez, R. E., Correa, J. C., Ramírez-Macías, J. A., Taborda, E. A., Zuluaga, C. A., Posada, N. L., & Londoño, J. M. (2015). Una arquitectura para el diseño conceptual de vehículos para exploración subacuática. Ingeniería y Ciencia, 11(21), 73-97. https://doi.org/10.17230/ingciencia.11.21.4
Wahab, I. H. A., Nuryaningsih, R. E., & Sardju, A. P. (2020). Proposed Mathematical Modeling of Small Remotely Operated Vehicle (ROV) Movement. Journal of Physics: Conference Series, 1569, (4), 042002. https://doi.org/10.1088/1742-6596/1569/4/042002
Zarei, A., Ashouri, A., Hashemi, S. M. J., Bushehri, S. F., Izadpanah, E., & Amini, Y. (2020). Experimental and numerical study of hydrodynamic performance of remotely operated vehicle. Ocean Engineering, 212, 107612. https://doi.org/10.1016/j.oceaneng.2020.107612
Zhang, X., Zhang, J., Yuan, J. & Li, M. (2013). Development of an underwater robot for nuclear reactor vessel. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1699-1703. https://doi.org/10.1109/ROBIO.2013.6739712
Zhou, B., & Zhao, M. (2020). Numerical simulation of thruster-thruster interaction for ROV with vector layout propulsion system. Ocean Engineering, 210, 107542. https://doi.org/10.1016/j.oceaneng.2020.107542
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Amanda Aparecida Carminatto; Giovana Ciongoli; Gaianê Sabundjian
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.