Qualidade higiênico-sanitária de sashimi de salmão (Salmo salar) pronto para o consumo

Autores

DOI:

https://doi.org/10.33448/rsd-v10i12.20900

Palavras-chave:

Brasil; Brasil; peixe cru; alimento seguro; consumo; bactéria; antibióticos.; Peixe cru; Alimento seguro; Consumo; Bactéria; Antibióticos.

Resumo

Cinquenta amostras de sashimi de 5 restaurantes foram caracterizadas quanto à contagem de Bactérias Heterotróficas Psicrotróficas Aeróbicas (APHB) e Bactérias Heterotróficas Mesofílicas Aeróbicas (AMHB), Enterobacteriaceae, Coliformes a 45ºC (Coliformes Termotolerantes), Estafilococos coagulase positiva e presença de Vibrio parahaemolyticus e Salmonella sp. e determinação do potencial de hidrogênio (pH) e nitrogênio básico volátil total (TVB-N). Foi avaliado o perfil de resistência dos isolados bacterianos aos agentes antimicrobianos penicilina, ampicilina, cefoxitina, cefotaxima, amicacina, gentamicina, tetraciclina e trimetripim-sulfametoxazol. Os resultados mostraram que as contagens de APHB, AMHB e estafilococos coagulase positiva e os valores das determinações de pH e TVB-N correspondem (estão de acordo) com as normas nacionais e internacionais adotadas como limites seguros de consumo. Em contraste, a contagem de Enterobacteriaceaes e coliformes termotolerantes e a presença de Salmonella sp. e V. parahaemolyticus não corresponde ao que estabelece (discordam) com essas normas, o que suscita preocupações quanto à qualidade higiênico-sanitária do sashimi. Os isolados de Staphylococcus aureus e V. parahaemolyticus mostraram resistência à penicilina, ampicilina, cefoxitina, cefotaxima, tetraciclina, gentamicina e amicacina, enquanto Salmonella sp. o isolado não apresentou resistência a todos os antimicrobianos estudados. Os resultados mostraram que 48% das amostras eram adequadas para consumo enquanto 52% apresentavam qualidade higiênico-sanitária insatisfatória para os parâmetros avaliados.

Referências

Arfatahery, N., Davoodabadi, A., & Abedimohtasab, T. (2016). Characterization of Toxin Genes and Antimicrobial Susceptibility of Staphylococcus aureus Isolates in Fishery Products in Iran. Scientific Reports. 6:34216. https://doi.org/10.1038/srep34216

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 45: 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

Beshiru, A., Igbisona, I. H., & Igbnosa, E. O. (2019). Prevalence of Antimicrobial Resistance and Virulence Gene Elements of Salmonella Serovars From Ready-to-eat (RTE) Shrimps. Frontiers in Microbiology. 10:1613. https://doi.org/10.3389/fmicb.2019.01613

Boss, R., Overesch, G., & Baumgartner, A. (2016). Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. Journal of Food Protection. 79:7:1240–1246. https://doi.org/10.4315/0362-028X.JFP-15-463

Brasil. Ministry of Agriculture. (1981). Official analytical methods for controlling animal products and their ingredients: II - Physical and chemical methods. National Secretariat for Agricultural Defense; National Animal Reference Laboratory, Brasilia DF.

Brasil. National Health Surveillance Agency. Resolution RDC 12 of January 2, 2001 (2001). which approves the Technical Regulation on Microbiological Standards for Food, Gazeta Oficial da Uniáo. Brasília – DF.

Brasil. Ministry of Agriculture, Livestock, and Supply. Decree 9,013, of March 29, 2017 on the Regulation of industrial and sanitary inspection of products of animal origin; Presidency of the Republic, Casa Civil, 2017; Brasília-DF.

Brasil. MS/SVS. (2019). Ministry of Health, Health Surveillance Secretariat; Foodborne Disease Outbreaks: Report 2018. http://portalarquivos2.saude.gov.br/images/pdf/2019/maio/17/Apresentacao-Surtos-DTA-Maio- 2019.pdf;

Cabello, F. C.; & Godfrey, H. P. (2016). Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environmental Microbiology. 18: 311-313. https://doi.org/10.1111 / 1462-2920.13247

Cabello, F. C., Godfrey, H. P, Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalization of antimicrobial resistance. Lancet Infectious Diseases. 16:7: 127-133. https://doi.org/10.1016 / S1473-3099 (16) 00100-6

CLSI. Clinical and Laboratory Standards Institute. (2010). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. Approved Guideline 2th ed. 2010; Document M45-A2. Wayne, PA, EE.UU.

CLSI. Clinical and Laboratory Standards Institute. (2016). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. 2016; supplement M100-S. Wayne, PA, EE.UU.

CLSI. Clinical and Laboratory Standards Institute. (2018). Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. 2018; supplement M100. Wayne, PA, EE.UU.

CFS. Centre for Food Safety. (2019). Microbiological Guidelines for Food For ready-to-eat food in general and specific food itens, 2014; Hong Kong, CN. https://www.cfs.gov.hk/english/index.html; accessed in 10/09/2019.

European Communities. (1995). Commission decision fixing the total volatile basic nitrogen (TVB-N) values for certain categories of fishery products and specifying the analysis methods to be used 95/149 / EC. Official Journal of the European Communities. L97: 84-87.

FAO. Food and Agriculture Organization of the United Nations. Section 2 - Recommended International Code of Practice - General Principles of Food Hygiene. In: 17. FAO. Food and Agriculture Organization of the United Nations. Food Quality and Safety Systems - A Training Manual on Food Hygiene and the Hazard Analysis and Critical Control Point (HACCP) System.1998. http://www.fao.org/docrep/W8088E/w8088e04.htm accessed in 01/15/2020.

FDA. Food and Drug Administration. (2012). Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins: Vibrio parahaemolyticus, 2th ed. 2012; 2:26-29. https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM297627.pdf.

Gonçalves, A. A. (2011). Fish Technology: Science, Technology, Innovation and Legislation, 1th ed. São Paulo: Editora Atheneu, p.624.

Howgate, P. (2010). A critical review of total volatile bases and trimethylamine as índices of freshness of fish; Part.1: Determination, Electronics Journal of Environmental, Agricultural and Food Chemistry. 9:1 29-57.

ICMSF. International Commission on Microbiological Specifications for foods. (1986). 2. Sampling for microbiological analysis: principles and specific applications. 2th ed. London: Blackwell Scientific Publications. 1986; p.131.

ISO. International Organization for Standardization. (1999). Meat and meat products, measurement of pH, Reference method 2th ed. (ISO 2917). Geneva, SWI.

Kang, C. H., Shin, Y., Yu, H., Kim, S., & So, J. S. (2018). Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from oysters in Korea. Marine Pollution Bulletin. 135: 69–74. https://doi.org/10.1016/j.marpolbul.2018.07.007

Kim, H. W., Hong, Y. J., Jo, J.I., Ha, S. D., Kim, S. H., Lee, H. J., & Rhee, M. S. (2016). Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Letters in Applied Microbiology. 64: 27-34. https://doi.org/10.1111/lam.12688

Lanzarin, M., Almeida Filho, E. S., Ritter, D. O., Mello, C. A., Corrêa, G. S. S., & Ignácio, C. M. S. (2011). Occurrence of Aeromonas sp. and psychrotrophic microorganisms and estimated shelf life of Pintado (Pseudoplatystoma coruscans) fillet kept refrigerated. Brazilian Archives of Veterinary Medicine and Animal Science. 63:6: 1541-1546. https://doi.org/10.1590/S0102-09352011000600035

Li, H., Stegger, M., Dalsgaard, A., & Leisner, J. J. (2019). Bacterial content and characterization of antibiotic resistant Staphylococcus aureus in Danish sushi products and association with food inspector rankings. International Journal of Food Microbiology. 305:108244. https://doi.org/10.1016/j.ijfoodmicro.2019.108244.

Liang, W. L., Pan, Y. L., Cheng, H. L., Li, T. C., Yu, P. H. F., & Chan, S. W. (2016). The microbiological quality of take-away raw salmon finger sushi sold in Hong Kong. Food Control. 69: 45-50. https://doi.org/10.1016/j.foodcont.2016.04.015.

Lopatek, M., Wieczorek, K., & Osek, J. (2018). Antimicrobial Resistance, Virulence Factors, and Genetic Profiles of Vibrio parahaemolyticus from Seafood. Applied and Environmental Microbiology. 84:16: 1-10. https://doi.org/10.1128/ AEM.00537-18.

Miguéis, S., Moura, A. T., Saraiva, C., & Esteves, A. (2016). Influence of season and type of restaurants on sashimi microbiota. The European Journal of Public Health. 26:5: 877–881. https://doi.org/10.1093/eurpub/ckw009

Miguéis, S., Santos, C., Saraiva, C., & Esteves, A. (2015). Evaluation of ready to eat sashimi in northern Portugal restaurants. Food Control. 47:32-36. https://doi.org/10.1016/j.foodcont.2014.06.025

Millanao, A. R., Barrientos-Schaffeld, C., Siegel-Tike, C. D., Ivanova, L., Godfrey, H. P., Dolz, H. J., Buschmann, A. H., & Cabello, F. C. (2018). Resistance to antimicrobials in Chile and the Una Salud paradigm: managing risks for human and animal public health resulting from the use of antimicrobials in salmon aquaculture and medicine. Chilean Journal of Infectology. 35:3: 299-303. https://doi.org/10.4067/s0716-10182018000300299.

Moura, A. T. ; Saraiva, C., Miguéis, S., Esteves, A. & Fontes, M. C. (2017). Antimicrobial Susceptibility of Coagulase-Positive and Coagulase-Negative Staphylococci in Ready-to-Eat Sashimi. Journal of Aquatic Food Product Technology. 26:1: 95-102. https://doi.org/10.1080/10498850.2015.1099069

Muscolino, D., Giarratana, F., Beninati, C., Tornambene, A., Panebianco, A., & Ziino, G. (2014). Hygienic-sanitary evaluation os sushi and sashimi sold in Messina ans Catania, Italy. Italian Journal of Food Safety. 3:1701: 134-136. https://doi.org/10.4081 / ijfs.2014.1701.

Nguyen, D. T., Kanki, H., Nguyen, D. P., Le, H. T., Ngo, P. T., Tran, D. N., Le, N. H., Dang, C. Y., Kawai, T., Kawahara, R., Yonogi, S., Hirai, Y., Jinnai, M., Yamasaki, S., Kumeda, Y., & Yamamoto, Y. (2016). Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. International Journal of Food Microbiology. 236:7: 115-12. https://doi.org/10.1016/j.ijfoodmicro.2016.07.017.

Nollet, I. M. L., & Toldrá, F. (2010). Handbook of seafood and seafoos products analysis. CRC Press – Taylor & Francis Group. Boca Raton, FL. p.910.

Obdait, M. M., & Salman, A. E. B. (2017). Antimicrobial Resistance Percentages of Salmonella and Shigella in Seafood Imported to Jordan: Higher Percentages and More Diverse Profiles in Shigella. Journal of Food Protection. 80:3: 414–419. https://doi.org/10.4315/0362-028X.JFP-16-322

Ogawa, M., & Maia, E.L. (1999). Fishing manual: science and technology of fish. 1ed. São Paulo: Varela. p. 430.

Onmaz, E. N., Abay, S., Karadal, F., Hizlisoy, H., Telli, N., & Al, S. (2015). Occurence and antimicrobial resistance of Staphylococcus aureus and Salmonella spp. in retail fish samples in Turkey. Marine Pollution Bulletin. 90: 242–246. https://doi.org/10.1016/j.marpolbul.2014.10.0460025-326X.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa cientifica. UFSM. https://repositorio.ufsm.br/bit stream/handle/1/1 582 4/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Puah, S. M., Chua, K. H., & Tan, J. A. M. A. (2017). Prevalence of Staphylococcus aureus and Salmonella enterica in ready-to-eat sushi and sashimi. Tropical Biomedicine. 34(1): 45–51. ISSN: 0127-5720. http://www.myjurnal.my/public/article-view.php?id=111609 accessed in 10/19/2019.

Puah, S. M., Chua, K. H., & Tan, J. A. M. A. (2016). Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes. International Journal of Environmental Research and Public Health. 13:2: 199. https://doi.org/10.3390/ijerph13020199.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2019; Vienna, Austria. https://www.R-project.org/ accessed in 10/19/2019.

Ryser, E. T., & Schuman, J. D. (2015). Mesophilic Aerobic Plate Count in: SALFINGER Y. & TORTORELLO ML. (eds.), Compendium of Methods for the MicrobioLogical Examination of Foods, 5th ed. American Public Health Association. Washington, D.C., Chapter 8, p.95-101.

Ryu, A. R., Mok, J. S., Lee, D. E., Kwon, J. Y., & Park, K. (2019). Occurrence, virulence, and antimicrobial resistance of Vibrio parahaemolyticus isolated from bivalve shellfish farms along the southern coast of Korea. Environmental Science and Pollution Research 26:21034–21043. https://doi.org/10.1007/s11356-019-05426-1.

Sakazaki, R. (2003). Vibrio parahaemolyticus. Encyclopedia of Food Sciences and Nutrition (Second Edition); p. 5988. ISBN 9780080917917.

Silva, I. P., Carneiro, C. Z., Saraiva, M. A. F., Oliveira, T. A. S., Sousa, O. V., & Evangelista-Barreto, N. S. (2018). Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. Marine Pollution Bulletin. 131: 757–762. https://doi.org/10.1016/j.marpolbul.2018.05.007

Silva, N., Junqueira, V. C. A., Silveira, N. F. A., Taniwaki, M. H., Gomes, R. A. R., & Okazaki, M. M. (2017). Manual of methods of microbiological analysis of food and water; 5th ed., São Paulo: Blucher, 560p. ISBN: 978-85-212-1225-6.

Sperling, L., Alter, T., & Huehn, S. (2015). Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador. Journal of Food Protection. 78:11: 2089-2092. https://doi.org/10.4315/0362-028X.JFP-15-160

Venter, H., Henningsen, M. L., & Begg, S. L. (2017). Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines. Essays Biochem. 61: 1-10. https://doi.org/10.1042 / EBC20160053

Vu, T. T. T., Lu, M., Pichpol, D., Pham, N. H., Baumann, M., Alter, T., & Huehn, S. (2016). Prevalence and antimicrobial resistance of Vibrio spp. in retail shrimps in Vietnam: Prävalenz und antimikrobielle Resistenz von Vibrio spp. in Shrimps von Märkten in Vietnam. Berliner und Münchener tierärztliche Wochenschrift. 129:1: 48–51. ISSN: 0005-9366. https://doi.org/10.2376 / 0005-9366-129-48

Xu, X., Cheng, J., Wu, Q., Zhang, J., & Xie, T. (2016). Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BioMed Central Microbiology. 16:32. https://doi.org/10.1186/s12866-016-0650-6

WHO. World Health Organization. (2012). Animal Waste, Water Quality and Human Health. London: WHO/ IWA, 489p. ISBN: 9781780401232.

WHO. World Health Organization. (2019). Salmonella (non-thyphoidal). https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal); accessed in: 10/18/2019.

Downloads

Publicado

01/10/2021

Como Citar

ARRUDA, I. O.; PORFÍRIO, T. M. .; NASCIMENTO, E. .; SOUSA, D. de A.; RITTER , D. O.; LANZARIN, M. . Qualidade higiênico-sanitária de sashimi de salmão (Salmo salar) pronto para o consumo. Research, Society and Development, [S. l.], v. 10, n. 12, p. e573101220900, 2021. DOI: 10.33448/rsd-v10i12.20900. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20900. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas